Innovation & Intellectual Property
Collaborative Dynamics in Africa

EDITORS:
JEREMY DE BEER, CHRIS ARMSTRONG,
CHIDI OGUAMANAM AND TOBIAS SCHONWETTER

Published by UCT Press in association
with the IP Unit, Faculty of Law,
University of Cape Town (UCT) and
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ).
Contents

Preface... v
Acknowledgements .. ix
About the Editors ... xiii
About the Contributors ... xiv
Acronyms and Abbreviations... xvii

Chapter 1
Innovation, Intellectual Property and Development
Narratives in Africa... 1
Jeremy de Beer, Chidi Oguamanam and Tobias Schonwetter

Chapter 2
Frameworks for Analysing African Innovation: Entrepreneurship,
the Informal Economy and Intellectual Property ... 32
Jeremy de Beer, Izabella Sowa and Kristen Holman

Chapter 3
Informal–Formal Sector Interactions in Automotive
Engineering, Kampala... 59
Dick Kawooya

Chapter 4
Geographical Indication (GI) Options for Ethiopian Coffee and
Ghanaian Cocoa.. 77
Chidi Oguamanam and Teshager Dagne

Chapter 5
A Consideration of Communal Trademarks for
Nigerian Leather and Textile Products... 109
Adebambo Adewopo, Helen Chuma-Okoro and Adejoke Oyewunmi

Chapter 6
The Policy Context for a Commons-Based Approach to
Traditional Knowledge in Kenya... 132
Marisella Ouma

Chapter 7
Consideration of a Legal “Trust” Model for the
Kukula Healers’ TK Commons in South Africa .. 151
Gino Cocchiaro, Johan Lorenzen, Bernard Maister and Britta Rutert
Chapter 8
From De Facto Commons to Digital Commons?
The Case of Egypt’s Independent Music Industry
Nagla Rizk

Chapter 9
Reflections on Open Scholarship Modalities and the
Copyright Environment in Kenya
Ben Sihanya

Chapter 10
African Patent Offices Not Fit for Purpose
Ikechi Mgbeoji

Chapter 11
The State of Biofuel Innovation in Mozambique
Fernando dos Santos and Simão Pelembe

Chapter 12
Reflections on the Lack of Biofuel Innovation in Egypt
Bassem Awad and Perihan Abou Zeid

Chapter 13
Effects of the South African IP Regime on Generating
Value from Publicly Funded Research: An Exploratory
Study of Two Universities
Caroline Ncube, Lucienne Abrahams and Titilayo Akinsanmi

Chapter 14
Towards University–Industry Innovation Linkages in Ethiopia
Wondwossen Belete

Chapter 15
Perspectives on Intellectual Property from Botswana’s
Publicly Funded Researchers
Njoku Ola Ama

Chapter 16
Current Realities of Collaborative Intellectual
Property in Africa
Jeremy de Beer, Chris Armstrong, Chidi Oguamanam and Tobias Schonwetter

Index
Preface

This book is among the key outputs of the Open African Innovation Research and Training (Open A.I.R.) Project. Based on case study research in nine African countries, the book examines the recent history and current on-the-ground realities of innovation and intellectual property (IP) in African settings. In doing so, the book reveals complex collaborative dynamics across a range of different countries, sectors and socio-economic contexts, and generates recommendations for how innovation and IP can be married with social and economic development objectives in African settings. This book’s sister report, *Knowledge and Innovation in Africa: Scenarios for the Future*, situates the current realities covered in this book within a much longer historical trajectory and multiple potential futures.

Conceived in 2009, established in 2010 and launched in 2011, Open A.I.R. is a pan-African and globally interconnected research and training network, which was established to:

- raise IP awareness in African settings and facilitate critical policy engagement;
- empower a networked, epistemic IP community in Africa;
- identify IP-related innovation bottlenecks and modes of open collaboration; and
- interrogate IP-related innovation metrics, capital and power structures.

Open A.I.R. is financially supported by Canada’s International Development Research Centre (IDRC) and Germany’s Federal Ministry for Economic Cooperation and Development (BMZ), and collaborates with numerous other organisations and individuals – all of whom are recognised in the Acknowledgements’ pages of this book. In addition to the aforementioned case study and foresight research, the Open A.I.R. network engages in a wide range of training, capacity building, outreach and policy engagement activities – both on the African continent and in settings outside the continent where matters of African innovation and IP are engaged. These engagements target external stakeholders capable of changing policies and practices, including:

- innovators, creators and entrepreneurs – individuals and companies;
- business groups such as chambers of commerce and industry associations;
- national, regional and international law-makers and policy-makers;
- issue leaders, such as politicians, judges, professors and practitioners;
- scientific and cultural research and development funding bodies;
Innovation & Intellectual Property

- university researchers, administrators and technology transfer officials;
- rights-holders and collective rights management organisations; and
- representatives of indigenous and local communities.

Open A.I.R. is motivated by a vision in which innovation and creativity in Africa are sustainable, properly valued, collaborative, widely accessible and result in benefits that are distributed throughout society. Based on this vision, the network’s mission is to better understand how innovation and IP processes work in African settings, how knowledge and technology currently protected by IP can be mobilised, and how IP systems can be harnessed or adapted in a manner that fosters openness-oriented collaborative innovation resulting in just distribution of new knowledge and technology.

This book and the Scenarios volume are two parts of a much broader attempt, by Open A.I.R. and other initiatives, to facilitate, in the medium to long term, the emergence of new, pragmatic means of valuing and facilitating innovation and creativity in Africa. Contextually appropriate metrics sensitive to the monitoring of meaningful changes in behaviour around innovation and creativity could be instrumental for promoting African grassroots entrepreneurship, broad-based business development, and a vibrant private sector built on small and medium-sized enterprises (SMEs) with a sustained ability to innovate. And the opportunities for innovation-driven SMEs could also benefit from policy-maker adoption of appropriate metrics when designing the policy and regulatory frameworks necessary to ensure predictable innovation environments for stakeholders.

Open A.I.R.’s core funders, IDRC and BMZ, have provided a framework for Open A.I.R.’s objectives. Open A.I.R. fits within the IDRC’s Science and Innovation programme, which supports research and policy engagement in relation to how science, technology and innovation (STI) can be engines of socio-economic development. Within this programme, the Information and Networks (I&N) initiative, which funds the Open A.I.R. Project, aims to better understand the linkages among innovation, creativity, networked collaborations (often enabled via information and communication technologies [ICTs]), and determinants of openness – including IP rights. The IDRC also supported the precursor network to Open A.I.R., the African Copyright and Access to Knowledge (ACA2K) Project, which ran from 2007 to 2011 and generated the nucleus of the expert network now driving Open A.I.R.

BMZ supports Open A.I.R. via Germany’s Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), under the GIZ commons@ip – Harnessing the Knowledge Commons for Open Innovation initiative. The commons@ip initiative focuses on how IP rights interact with open innovation, the knowledge commons, open licences and collaborative innovation. It is part of the BMZ-
mandated Train for Trade programme, which aims at strengthening the private sector and its constituent bodies in the Southern African Development Community (SADC) region through training and capacity building in export promotion, quality control and promotion of open innovation – as well as through promotion of local and regional economic development and trade.

Open A.I.R.’s training and capacity building components include:

- building the network’s capacity – through online platforms, network-wide workshops, research methodology support, scenario-building meetings and thematic seminars;
- awarding Open A.I.R. Fellowships to emerging IP scholars and potential leaders – from Tanzania, Kenya, Uganda, Ethiopia, Cameroon, Nigeria and Egypt;
- exchanging knowledge through Africa-wide and South–South knowledge networking at seminars, workshops and conferences;
- growing awareness among African creators, innovators, entrepreneurs and policy-makers of openness-oriented approaches to innovation and IP matters in Africa; and
- teaching at African tertiary educational institutions, including development of a replicable, open course curriculum on IP law and development.

Because of the immense geographic size of the African continent, and unique logistical challenges of African intra-continental travel, ICTs have been instrumental in empowering the research network’s “community of practice”. Open A.I.R. has an offline presence in 14 African countries and in multiple countries outside the continent. Online, the network includes hundreds of individuals and institutions throughout Africa and from all corners of the globe, linked via a suite of online networking and social-media tools. The Open A.I.R. community of practice advances a culture of multidirectional exchange among African innovative and creative communities and external actors – with a view to sustainably empowering local communities and SMEs. Network members promote cross-fertilisation of ideas via original thinking and partnerships with national and international institutions, scholars, funding agencies, civil society organisations and other willing partners. Those wishing to join the community can visit http://www.openair.org.za/join.
Acknowledgements

True to its emphasis on “collaborative dynamics”, this book is the product of the collective energy of dozens of people and institutions in many countries, all of whom work within the Open African Innovation Research and Training (Open A.I.R.) network. Open A.I.R. currently has core network members and institutions in 14 African countries, spanning North Africa (Egypt, Tunisia), West Africa (Senegal, Ghana, Nigeria, Cameroon), East Africa (Ethiopia, Uganda, Kenya, Tanzania) and southern Africa (Malawi, Mozambique, Botswana and South Africa). Other network members and institutions are in Canada, the United States, the United Kingdom, Germany and France. These members are, in turn, linked – via online and offline interactions – to a broader Open A.I.R. network of hundreds of individuals and institutions, including people and entities in Brazil, India, Malaysia, Australia, Switzerland and the Netherlands. The network receives generous financial support from Canada’s International Development Research Centre (IDRC) and Germany’s Federal Ministry for Economic Cooperation and Development (BMZ).

Each of the editors and authors of this volume is part of, and collaboratively exchanges knowledge and expertise with, this large network, and we the editors, and each of the contributors, are profiled in “About the Editors” and “About the Contributors” sections of this book and on the Open A.I.R. website’s Team page, http://www.openair.org.za/content/open-air-team. On this Team page, one can also find the names and contact details of Open A.I.R. Fellows and other network members and institutions. The network is also accessible via its social media platforms, featured at http://www.openair.org.za/join.

Open A.I.R.’s administrative hub is the IP Unit in the University of Cape Town Faculty of Law, where Project Manager Nan Warner and Administrator Phyllis Webb are the key operational drivers. Warner and Webb receive management support from two of the editors of this book (and the co-Principal Investigators of the Open A.I.R. Project), UCT IP Unit Director Tobias Schonwetter and Jeremy de Beer of the University of Ottawa Faculty of Law. Also supporting project management are Julie Nadler-Visser of UCT’s Research Contracts and IP Services (RCIPS) unit, members of the UCT Finance Department and Faculty of Law Finance Department, and another editor of this book: Chris Armstrong of the LINK Centre at the University of the Witwatersrand (Wits) in Johannesburg.

Network strategic guidance is provided by a Steering Committee composed of De Beer, Schonwetter, Warner, Chidi Oguamanam (another of this book’s
editors) of the University of Ottawa Faculty of Law, Nagla Rizk of The American University in Cairo (AUC), Sisule Musungu of IQsensato in Nairobi, Khaled Fourati of the IDRC office in Cairo, and Balthas Seibold of Germany’s Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) in Bonn. Further strategic support from the IDRC is, or has been, provided by Naser Faruqui, Simon Carter, Laurent Elder, Fernando Perini, Matthew Smith, Heloise Emdon and Phet Sayo; Karim Badran and Rose-Marie Ndiaye Pereira on financial matters; and Michelle Hibler and Nola Haddadian on publications. GIZ’s involvement is focused on the capacity-building components of the network, which are carried out in collaboration with the GIZ’s commons@ip – Harnessing the Knowledge Commons for Open Innovation initiative. At GIZ, in addition to support from the aforementioned Steering Committee member Balthas Seibold, who advises on matters of international knowledge cooperation and networking, support has also come from Petra Hagemann, Christine de Barros Said, Ursula van Look, Marina Neuendorff, Margrit Brockhaus and the Working Group of German Development Organisations on Promoting Innovation Systems. At UCT, as well as those already mentioned, key supporters and collaborators have been the Dean of Law, PJ Schwikkard, Lee-Ann Tong in the Faculty of Law, and, in the IP Unit, the Unit’s founder Julian Kinderlerer, its Deputy Director Caroline Ncube and its Senior Research Fellow Bernard Maister. At the University of Ottawa, in addition to those already mentioned, support has been provided by the Dean of the Faculty of Law, Common Law Section, Nathalie Des Rosiers, and Former Dean Bruce Feldthu.ens.

For this book, key network participants were the team of JD candidates in the University of Ottawa Faculty of Law – Lukas Frey, Will Sapp, Phil Holdsworth, Maya Boorah, Kristen Holman and Saara Punjani – who provided long hours of diligent editorial assistance. In addition, because the research case studies presented in this book all required collection of data from human subjects – via interviews and/or focus group discussions and/or written surveys – this book would not have been possible without the cooperation of dozens of respondents across the countries of study. For reasons of confidentiality, most survey and interview respondents are not named in this book, but we are sincerely grateful for their contributions. Also contributing to the research outlined in this book was Donna Podems of OtherWISE in Cape Town, who advised on research methodologies and supported a methodology workshop for several of the authors featured in this volume, in addition to her support of Open A.I.R.’s monitoring and evaluation (M&E) framework. At this book’s publisher, UCT Press, the key drivers have been Publisher Sandy Shepherd and Project Manager Glenda Younge. The cover design for this volume is by Elsabe Gelderblom of Farm Design in Cape Town, who does all of Open A.I.R.’s design work for its website, social media tools, PR materials,
Acknowledgements

Briefing Notes and the network’s other substantial publication output, the Open A.I.R. *Scenarios* compendium – which is available in hard-copy, and on the Open A.I.R. website, as a separate published output and companion to this book.

Network headquarters at the UCT IP Unit serves as Open A.I.R.’s Southern Africa Hub, coordinated by Project Manager Warner. There are also four other Hubs: the North Africa Hub at the Access to Knowledge for Development Center (A2K4D) of the School of Business at The American University in Cairo (AUC), coordinated by Nagham El Houssamy under the direction of Nagla Rizk; the West Africa Hub at the Nigerian Institute of Advanced Legal Studies (NIALS) in Lagos, coordinated by Helen Chuma-Okoro under the direction of Adebambo Adewopo; the East Africa Hub at the Centre for IP and IT Law (CIPIT) of Strathmore University, Nairobi, coordinated by CIPIT Director Isaac Rutenberg; and the Canada Hub at the University of Ottawa Faculty of Law, coordinated by De Beer and Oguamanam. Contact can be made with these Hubs and Hub Coordinators via the aforementioned Open A.I.R. website Team page.

Also integral to the success of the network are its nine Fellows, each of whom has spent time at the UCT IP Unit in Cape Town. The Fellows have contributed to Open A.I.R.’s case study and foresight research, to outreach and training work, and to building the network. The nine Fellows are: Esther Ngom of the Ngo Nyemeck law firm in Yaoundé; Seble Baraki of the Justice and Legal System Research Institute (JLSRI) in Addis Ababa; Moses Mulumba of the Centre for Health, Human Rights and Development (CEHURD) in Kampala; Douglas Gichuki of CIPIT in Nairobi; Milton Lore of Bridgeworks Africa in Nairobi; Eliamani Laltaika of the Tanzania Intellectual Property Rights Network (TIP-Net) in Dar es Salaam; Alexandra Mogyoros, a student in the Faculty of Law at the University of Ottawa; West Africa Hub Coordinator Helen Chuma-Okoro of NIALS in Lagos; and North Africa Hub Coordinator Nagham El Houssamy of A2K4D in Cairo.

Other collaborating institutions are the Program on Information Justice and Intellectual Property (PIJIP) at the Washington College of Law at American University in Washington, DC; the Centre for Technology and Society (CTS) in Brazil; the Centre for Internet and Society (CIS) in India; and the Open Society Foundations, where Open A.I.R.’s key partner is Vera Franz. The Open A.I.R. network has also benefited from interaction with staff at the World Intellectual Property Organisation (WIPO) headquarters in Geneva. In London, Shirin Elahi of Scenarios Architecture is the driver of Open A.I.R. foresight research work, as featured in the aforementioned *Scenarios* compendium that provides an important forward-looking complement to the current picture offered by this volume. Jo Higgs of Go Trolley Films in Cape Town did post-production on the videos available on the Open A.I.R. YouTube channel – videos which show how the network came into being and how the research was conceptualised.
All the people and institutions mentioned here have in one way or another played a role, by collaborating within the Open A.I.R. network, in the conceptualisation, planning, data collection, data analysis, writing, editing, design and production processes that resulted in successful research and the completion of this book. It is hoped that this volume’s free availability online, under a Creative Commons (CC) licence, will ensure that the book’s collaborative dynamics do not end here at the moment of publication, and continue long into the future in the work of the still-growing Open A.I.R. community.

Jeremy de Beer, Chris Armstrong, Chidi Oguamanam, Tobias Schonwetter
September 2013
About the Editors

Prof. Jeremy de Beer is an Associate Professor in the Faculty of Law, University of Ottawa, and co-Principal Investigator of the Open African Innovation Research and Training (Open A.I.R.) Project. His edited books include Access to Knowledge in Africa: The Role of Copyright (UCT Press, 2010), and Implementing the World Intellectual Property Organization’s Development Agenda (Wilfred Laurier University Press, 2009). jeremy.debeer@uottawa.ca

Dr Chris Armstrong is a Visiting Researcher at the LINK Centre, University of the Witwatersrand (Wits), Johannesburg, publishing and communications consultant for the Open African Innovation Research and Training (Open A.I.R.) Project, and former Research Manager of the African Copyright and Access to Knowledge (ACA2K) Project. He is an editor of Access to Knowledge in Africa: The Role of Copyright (UCT Press, 2010). c.g.armstrong@gmail.com

Dr Chidi Oguamanam is an Associate Professor in the Faculty of Law, University of Ottawa, a lawyer with Blackfriars LLP in Lagos, a co-investigator for the Open African Innovation Research and Training (Open A.I.R.) Project, and former Director of the Law and Technology Institute at Dalhousie University, Halifax, N.S., Canada. He is author of the books Intellectual Property in Global Governance (Routledge, 2012) and International Law and Indigenous Knowledge (University of Toronto Press, 2010). coguaman@uottawa.ca

Dr Tobias Schonwetter is Director of the IP Unit in the Faculty of Law, University of Cape Town (UCT), African Regional Coordinator for Creative Commons (CC), co-Principal Investigator for the Open African Innovation Research and Training (Open A.I.R.) Project, and former co-Principal Investigator for the African Copyright and Access to Knowledge (ACA2K) Project. He is an editor of Access to Knowledge in Africa: The Role of Copyright (UCT Press, 2010). tobiasschonwetter@gmail.com
About the Contributors

Dr Perihan Abou Zeid is a Senior Lecturer in the Faculty of Legal Studies and International Relations, Pharos University in Alexandria (PUA), a Post-doctoral Fellow in the Centre of Economic Law and Governance at Vrije University, Brussels, and a volunteer attorney for Public Interest Intellectual Property Advisors (PIIPA). perihan.abouzeid@pua.edu.eg

Lucienne Abrahams is Director of the LINK Centre, University of the Witwatersrand (Wits), Johannesburg, and a former board member of South Africa’s National Advisory Council on Innovation (NACI) and National Research Foundation (NRF). luciennesa@gmail.com

Prof. Adebambo Adewopo is a Professor of Law at the Nigerian Institute of Advanced Legal Studies (NIALS), Abuja, a Principal Partner at L&A Legal Consultants, Lagos, and former Director-General of the Nigerian Copyright Commission (NCC). tonade@yahoo.com

Titi Akinsanmi is Policy and Government Relations Manager at Google, Johannesburg, an African Regional Representative on the At-Large Advisory Committee of the Internet Corporation for Assigned Names and Numbers (ICANN), and a former Research Associate at the LINK Centre, University of the Witwatersrand (Wits), Johannesburg. titi.akinsanmi@gmail.com

Prof. Njoku Ola Ama is an Associate Professor in the Department of Statistics, University of Botswana, Gaborone. amano@mopipi.ub.bw

Dr Bassem Awad is a Judge at the Appeal Court of Egypt, an Adjunct Professor in the Faculty of Law at the University of Western Ontario, London, Ont., Canada, and a Tutor at the Academy of the World Intellectual Property Organisation (WIPO). awad_bassem@hotmail.com

Wondwossen Belete is President of the Society for Technology Studies (STS), Addis Ababa, former Manager of International Creativity and Innovation Development Support Services (ICIDSS), and former Director of IP Protection and Technology Transfer at the Ethiopian Intellectual Property Office (EIPO). wondwossenbel@yahoo.com

Helen Chuma-Okoro is a Research Fellow at the Nigerian Institute of Advanced Legal Studies (NIALS), Lagos, a Research Fellow of the Open African Innovation Research and Training (Open A.I.R.) Project, and Coordinator of Open A.I.R.’s West Africa hub in Lagos. helenchuma@gmail.com
Gino Cocchiaro is a lawyer with Natural Justice: Lawyers for Communities and the Environment, Cape Town, and a former Legal Researcher at the International Development Law Organisation (IDLO), Rome. gino@naturaljustice.org

Dr Tesh Dagne is an Assistant Professor in the Faculty of Law, Thompson Rivers University, Kamloops, B.C., Canada. tdagne@tru.ca

Fernando dos Santos is Director-General of the African Regional Intellectual Property Organisation (ARIPO), Harare, a Tutor at the World Intellectual Property Organisation (WIPO) Worldwide Academy, Geneva, a former Lecturer in Law at Eduardo Mondlane University (UEM) and the Technical University of Mozambique, Maputo, and former Director-General of the Mozambican Industrial Property Institute (IPI). fsantos@aripo.org

Kristen Holman is a JD candidate in the Faculty of Law, University of Ottawa. kristen.holman@gmail.com

Dr Dick Kawooya is an Assistant Professor in the School of Library and Information Science, University of South Carolina, Columbia, SC, and former Lead Researcher of the African Copyright and Access to Knowledge (ACA2K) Project. He is an editor of Access to Knowledge in Africa: The Role of Copyright, (UCT Press, 2010). kawooya@sc.edu

Johan Lorenzen is an LLB candidate at the University of Cape Town (UCT) and a former consultant with Natural Justice: Lawyers for Communities and the Environment. yolorenz@gmail.com

Dr Bernard Maister is a Senior Research Fellow in the IP Unit, Faculty of Law, University of Cape Town (UCT), practised as an IP (patent) lawyer in the US, and is one of the authors of Harnessing Intellectual Property Rights for Development Objectives (Wolf Legal, 2011). maisterb@gmail.com

Dr Ikechi Mgbeoji is an Associate Professor at Osgoode Hall Law School, York University, Toronto, and a lawyer with Blackfriars LLP, Lagos. His authored books include Global Biopiracy (UBC Press, 2006). ikechimgbeoji@osgoode.yorku.ca

Dr Caroline Ncube is an Associate Professor, and Deputy Director of the IP Unit, in the Faculty of Law, University of Cape Town (UCT), and lectures in the Master of IP programme of the World Intellectual Property Organisation (WIPO) and African Regional Intellectual Property Organisation (ARIPO) at Africa University, Mutare, Zimbabwe. caroline.ncube@uct.ac.za

Dr Marisella Ouma is Executive Director of the Kenya Copyright Board (KECOBO), Nairobi, an Advocate of the High Court of Kenya, has taught IP Law at the University of Nairobi, and lectures in the Master of IP programme of the World Intellectual Property Organisation (WIPO) and African Regional Intellectual Property Organisation (ARIPO) at Africa University, Mutare, Zimbabwe. caroline.ncube@uct.ac.za
Intellectual Property Organisation (ARIPO) at Africa University, Mutare, Zimbabwe. mwarsie@justice.com

Dr Adejoke Oyewunmi is a Senior Lecturer in the Faculty of Law, University of Lagos (Unilag), Akoka, and a former Adjunct Lecturer in the Master of IP programme of the World Intellectual Property Organisation (WIPO) and African Regional Intellectual Property Organisation (ARIPO) at Africa University, Mutare, Zimbabwe. aoyewunmi@unilag.edu.ng, adejoke21@yahoo.com

Simão Pelembe is a legal advisor at Petróleos de Mozambique (Petromoc), Maputo, a Master's candidate in Business Law at Instituto Superior de Ciências e Tecnologia de Moçambique (ISCTEM), and serves on the boards of Petromoc group companies Petrogás, Somotor, Petroauto, Ecomoz and Somyoung Motors. simao.pelembe@petromoc.co.mz

Dr Nagla Rizk is Professor of Economics at the School of Business, The American University in Cairo (AUC), founding Director of the Access to Knowledge for Development Center (A2K4D) at AUC, a Faculty Associate at Harvard University's Berkman Center for Internet and Society, an affiliated Fellow of Yale University's Information Society Project (ISP), and a founding member of the Access to Knowledge Global Academy. She is co-editor of, and contributor to, Access to Knowledge in Egypt: New Research on Intellectual Property, Innovation and Development (Bloomsbury Academic, 2010), and a co-author of Arab Knowledge Report 2009. naglarzk@aucegypt.edu

Britta Rutert is a PhD candidate in Anthropology at the Free University of Berlin and a Researcher for Natural Justice: Lawyers for Communities and the Environment in Bushbuckridge, South Africa. britta.rutert@gmail.com

Prof. Ben Sihanya teaches at the University of Nairobi Law School, is CEO of Innovative Lawyering and Sihanya Mentoring, Nairobi, and is former Dean of Law and Chair of the Department of Commercial Law at the University of Nairobi. His edited books include Intellectual Property Rights in Kenya (Konrad Adenauer Stiftung, 2009), and he is the author of Intellectual Property and Innovation in Kenya and Africa (Innovative Lawyering and Sihanya Mentoring, 2013) and Presidency and Administrative Bureaucracy in Kenya (forthcoming, 2013). sihanyamentoring@gmail.com, sihanya@innovativelawyering.com

Izabella Sowa is a JD candidate in the Faculty of Law, University of Ottawa. sowa.izabella@gmail.com
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2K</td>
<td>access to knowledge</td>
</tr>
<tr>
<td>A2K4D</td>
<td>Access to Knowledge for Development Center (The American University in Cairo, Egypt)</td>
</tr>
<tr>
<td>AAU</td>
<td>Addis Ababa University</td>
</tr>
<tr>
<td>ABS</td>
<td>access and benefit-sharing</td>
</tr>
<tr>
<td>ACA2K</td>
<td>African Copyright and Access to Knowledge Project</td>
</tr>
<tr>
<td>ACP</td>
<td>African, Caribbean and Pacific Group of States</td>
</tr>
<tr>
<td>ACTS</td>
<td>African Centre for Technology Studies (Kenya)</td>
</tr>
<tr>
<td>ADPP</td>
<td>Ajuda de Desenvolvimento de Povo para Povo (Mozambique)</td>
</tr>
<tr>
<td>AERC</td>
<td>African Economic Research Consortium</td>
</tr>
<tr>
<td>AFTE</td>
<td>Association for the Freedom of Thought and Expression (Egypt)</td>
</tr>
<tr>
<td>AGOA</td>
<td>African Growth and Opportunity Act</td>
</tr>
<tr>
<td>AIM</td>
<td>Agência de Informação de Moçambique</td>
</tr>
<tr>
<td>AmCham</td>
<td>American Chamber of Commerce (Egypt)</td>
</tr>
<tr>
<td>ARC</td>
<td>Aquaculture Research Centre (Egypt)</td>
</tr>
<tr>
<td>ARIPo</td>
<td>African Regional Intellectual Property Organisation</td>
</tr>
<tr>
<td>ASSAf</td>
<td>Academy of Sciences of South Africa</td>
</tr>
<tr>
<td>ASTII</td>
<td>African Science, Technology and Innovation Indicators</td>
</tr>
<tr>
<td>ATO</td>
<td>alternative trading organisation</td>
</tr>
<tr>
<td>ATPC</td>
<td>African Trade Policy Centre</td>
</tr>
<tr>
<td>ATPS</td>
<td>African Technology Policy Studies Network</td>
</tr>
<tr>
<td>AU</td>
<td>African Union</td>
</tr>
<tr>
<td>AUC</td>
<td>The American University in Cairo</td>
</tr>
<tr>
<td>BBEE Act</td>
<td>Broad-Based Black Economic Empowerment Act 53 of 2003 (South Africa)</td>
</tr>
<tr>
<td>BCP</td>
<td>bio-cultural community protocol</td>
</tr>
<tr>
<td>BIH</td>
<td>Botswana Innovation Hub</td>
</tr>
<tr>
<td>BMZ</td>
<td>Federal Ministry for Economic Cooperation and Development (Germany)</td>
</tr>
<tr>
<td>BoI</td>
<td>Bank of Industry (Nigeria)</td>
</tr>
<tr>
<td>BOTECH</td>
<td>Botswana Technology Centre</td>
</tr>
<tr>
<td>BPR</td>
<td>business process re-engineering</td>
</tr>
<tr>
<td>CAA</td>
<td>Cocoa Abrabopa Association (Ghana)</td>
</tr>
<tr>
<td>CARICOM</td>
<td>Caribbean Community</td>
</tr>
<tr>
<td>CBD</td>
<td>Convention on Biological Diversity</td>
</tr>
<tr>
<td>CBN</td>
<td>Central Bank of Nigeria</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CC</td>
<td>Creative Commons</td>
</tr>
<tr>
<td>CCIA</td>
<td>Computer and Communications Industry Association</td>
</tr>
<tr>
<td>CEDAT</td>
<td>College of Engineering, Design, Art and Technology (Makerere University, Uganda)</td>
</tr>
<tr>
<td>CEHURD</td>
<td>Centre for Health, Human Rights and Development (Uganda)</td>
</tr>
<tr>
<td>CEPIL</td>
<td>Centre for Public Interest Law (Ghana)</td>
</tr>
<tr>
<td>CIGI</td>
<td>Centre for International Governance Innovation</td>
</tr>
<tr>
<td>CIPC</td>
<td>Companies and Intellectual Property Commission (South Africa)</td>
</tr>
<tr>
<td>CIPIT</td>
<td>Centre for IP and IT Law (Strathmore University, Kenya)</td>
</tr>
<tr>
<td>CIPO</td>
<td>Canadian Intellectual Property Office</td>
</tr>
<tr>
<td>CIPR</td>
<td>Commission on Intellectual Property Rights (UK)</td>
</tr>
<tr>
<td>CMO</td>
<td>collective management organisation</td>
</tr>
<tr>
<td>COCOBOD</td>
<td>Ghana Cocoa Board</td>
</tr>
<tr>
<td>CPD</td>
<td>Centre for Policy Dialogue (Nigeria)</td>
</tr>
<tr>
<td>CRTT</td>
<td>Centre for Research in Transportation Technologies (Makerere University, Uganda)</td>
</tr>
<tr>
<td>CSIR</td>
<td>Council of Scientific and Industrial Research (India)</td>
</tr>
<tr>
<td>CTEA</td>
<td>Copyright Term Extension Act (US)</td>
</tr>
<tr>
<td>CVCP</td>
<td>Committee of Vice-Chancellors and Principals (UK)</td>
</tr>
<tr>
<td>DACST</td>
<td>Department of Arts, Culture, Science and Technology (South Africa)</td>
</tr>
<tr>
<td>DEST</td>
<td>Department of Education, Science and Training (Australia)</td>
</tr>
<tr>
<td>DFID</td>
<td>Department for International Development (UK)</td>
</tr>
<tr>
<td>DHET</td>
<td>Department of Higher Education and Training (South Africa)</td>
</tr>
<tr>
<td>DNS</td>
<td>domain name system</td>
</tr>
<tr>
<td>DRC</td>
<td>Democratic Republic of Congo</td>
</tr>
<tr>
<td>DRM</td>
<td>digital rights management</td>
</tr>
<tr>
<td>DRST</td>
<td>Department of Research, Science and Technology (Botswana)</td>
</tr>
<tr>
<td>DST</td>
<td>Department of Science and Technology (South Africa)</td>
</tr>
<tr>
<td>DTI</td>
<td>Department of Trade and Industry (South Africa)</td>
</tr>
<tr>
<td>EAEP</td>
<td>East African Educational Publishers (Kenya)</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>ECBP</td>
<td>Engineering Capacity Building Program (Ethiopia)</td>
</tr>
<tr>
<td>ECOWAS</td>
<td>Economic Community of West African States</td>
</tr>
<tr>
<td>ECX</td>
<td>Ethiopia Commodity Exchange</td>
</tr>
<tr>
<td>EEAAA</td>
<td>Egyptian Environmental Affairs Agency</td>
</tr>
<tr>
<td>EIPO</td>
<td>Ethiopian Intellectual Property Office</td>
</tr>
<tr>
<td>EIPR</td>
<td>Egyptian Intellectual Property Rights Law</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Authority (Ethiopia)</td>
</tr>
<tr>
<td>EPO</td>
<td>European Patent Office</td>
</tr>
<tr>
<td>EST</td>
<td>environmentally sound technology</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EUEI</td>
<td>EU Energy Initiative</td>
</tr>
<tr>
<td>Eurostat</td>
<td>Statistical Office of the European Communities</td>
</tr>
<tr>
<td>FAO</td>
<td>UN Food and Agriculture Organisation</td>
</tr>
<tr>
<td>FCN</td>
<td>Friendship, Commerce and Navigation (Kenya)</td>
</tr>
<tr>
<td>FDI</td>
<td>foreign direct investment</td>
</tr>
<tr>
<td>FDRE</td>
<td>Federal Democratic Republic of Ethiopia</td>
</tr>
<tr>
<td>FDSE</td>
<td>Free Day Secondary Education (Kenya)</td>
</tr>
<tr>
<td>FES</td>
<td>Friedrich Ebert Stiftung (Germany)</td>
</tr>
<tr>
<td>FLO</td>
<td>Fairtrade Labelling Organisations International</td>
</tr>
<tr>
<td>FOSS</td>
<td>free and open source software</td>
</tr>
<tr>
<td>FPE</td>
<td>Free Primary Education (Kenya)</td>
</tr>
<tr>
<td>FTA</td>
<td>free trade agreement</td>
</tr>
<tr>
<td>GDP</td>
<td>gross domestic product</td>
</tr>
<tr>
<td>GEM</td>
<td>Global Entrepreneurship Monitor</td>
</tr>
<tr>
<td>GERD</td>
<td>gross expenditure on research and development</td>
</tr>
<tr>
<td>GI</td>
<td>geographical indication</td>
</tr>
<tr>
<td>GIPC</td>
<td>Global Intellectual Property Center</td>
</tr>
<tr>
<td>GIZ</td>
<td>Deutsche Gesellschaft für Internationale Zusammenarbeit (Germany)</td>
</tr>
<tr>
<td>GM</td>
<td>genetically modified</td>
</tr>
<tr>
<td>GOAN</td>
<td>Ghana Organic Agriculture Network</td>
</tr>
<tr>
<td>GOK</td>
<td>Government of Kenya</td>
</tr>
<tr>
<td>GR</td>
<td>genetic resources</td>
</tr>
<tr>
<td>GTZ</td>
<td>German Technical Cooperation</td>
</tr>
<tr>
<td>HSRC</td>
<td>Human Sciences Research Council (South Africa)</td>
</tr>
<tr>
<td>ICANN</td>
<td>Internet Corporation for Assigned Names and Numbers</td>
</tr>
<tr>
<td>ICIDSS</td>
<td>International Creativity and Innovation Development Support Services (Ethiopia)</td>
</tr>
<tr>
<td>ICJ</td>
<td>International Commission of Jurists</td>
</tr>
<tr>
<td>ICLS</td>
<td>International Conference of Labour Statisticians</td>
</tr>
<tr>
<td>ICPSK</td>
<td>Institute of Chartered Public Secretaries of Kenya</td>
</tr>
<tr>
<td>ICT</td>
<td>information and communication technology</td>
</tr>
<tr>
<td>ICT4D</td>
<td>ICT for development</td>
</tr>
<tr>
<td>ICTSD</td>
<td>International Centre for Trade and Sustainable Development</td>
</tr>
<tr>
<td>IDC</td>
<td>Industrial Development Corporation (South Africa)</td>
</tr>
<tr>
<td>IDLO</td>
<td>International Development Law Organisation</td>
</tr>
<tr>
<td>IDRC</td>
<td>International Development Research Centre (Canada)</td>
</tr>
<tr>
<td>IDS</td>
<td>Institute of Development Studies (Kenya)</td>
</tr>
<tr>
<td>IE</td>
<td>informal economy</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>IFC</td>
<td>International Finance Corporation</td>
</tr>
<tr>
<td>IICA</td>
<td>Inter-American Institute for Cooperation on Agriculture</td>
</tr>
<tr>
<td>IIDMM</td>
<td>Institute of Infectious Disease and Molecular Medicine (South Africa)</td>
</tr>
<tr>
<td>IIED</td>
<td>International Institute for Environment and Development</td>
</tr>
<tr>
<td>IIPA</td>
<td>International Intellectual Property Alliance</td>
</tr>
<tr>
<td>IISD</td>
<td>International Institute for Sustainable Development</td>
</tr>
<tr>
<td>ILC</td>
<td>indigenous and local community</td>
</tr>
<tr>
<td>ILO</td>
<td>International Labour Organisation</td>
</tr>
<tr>
<td>INAO</td>
<td>Institut national des appellations d'origine (France)</td>
</tr>
<tr>
<td>IP</td>
<td>intellectual property</td>
</tr>
<tr>
<td>IPA</td>
<td>Industrial Property Act (Botswana)</td>
</tr>
<tr>
<td>IPC</td>
<td>International Patent Classification</td>
</tr>
<tr>
<td>IPI</td>
<td>Industrial Property Institute (Mozambique)</td>
</tr>
<tr>
<td>IPR-PFRD Act</td>
<td>Intellectual Property Rights from Publicly Financed Research and Development Act (South Africa)</td>
</tr>
<tr>
<td>IRB</td>
<td>Institutional Review Board (Botswana)</td>
</tr>
<tr>
<td>IRENA</td>
<td>International Renewable Energy Agency</td>
</tr>
<tr>
<td>ISAS</td>
<td>integrated seawater agriculture system</td>
</tr>
<tr>
<td>ISCTEM</td>
<td>Instituto Superior de Ciências e Tecnologia de Moçambique</td>
</tr>
<tr>
<td>ISI</td>
<td>Institute for Scientific Information</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organisation for Standardisation</td>
</tr>
<tr>
<td>ISP</td>
<td>Information Society Project (Yale University, US)</td>
</tr>
<tr>
<td>ITC</td>
<td>International Trade Centre</td>
</tr>
<tr>
<td>JBEDC</td>
<td>Japan Bio-Energy Development Corporation</td>
</tr>
<tr>
<td>JITAP</td>
<td>Joint Integrated Technical Assistance Programme</td>
</tr>
<tr>
<td>JLSRI</td>
<td>Justice and Legal System Research Institute (Ethiopia)</td>
</tr>
<tr>
<td>K2C Biosphere</td>
<td>Kruger to Canyons Biosphere (South Africa)</td>
</tr>
<tr>
<td>KE</td>
<td>knowledge economy</td>
</tr>
<tr>
<td>KECOBO</td>
<td>Kenya Copyright Board</td>
</tr>
<tr>
<td>KENFAA</td>
<td>Kenya Nonfiction and Academic Authors’ Association</td>
</tr>
<tr>
<td>KES</td>
<td>Kenyan Shilling</td>
</tr>
<tr>
<td>KHA</td>
<td>Kenya Historical Association</td>
</tr>
<tr>
<td>KICD</td>
<td>Kenya Institute of Curriculum Development</td>
</tr>
<tr>
<td>KIPI</td>
<td>Kenya Industrial Property Institute</td>
</tr>
<tr>
<td>KIPPRA</td>
<td>Kenya Institute for Public Policy Research and Analysis</td>
</tr>
<tr>
<td>KNAS</td>
<td>Kenya National Academy of Sciences</td>
</tr>
<tr>
<td>KOLA</td>
<td>Kenya Oral Literature Association</td>
</tr>
<tr>
<td>KTO</td>
<td>knowledge transfer office</td>
</tr>
<tr>
<td>LBC</td>
<td>Licensed Buying Company (Ghana)</td>
</tr>
<tr>
<td>LDC</td>
<td>least developed country</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>LE</td>
<td>Egyptian Pound</td>
</tr>
<tr>
<td>LINK Centre</td>
<td>Learning Information Networking Knowledge Centre (Wits University, South Africa)</td>
</tr>
<tr>
<td>LSK</td>
<td>Law Society of Kenya</td>
</tr>
<tr>
<td>MAN</td>
<td>Manufacturers Association of Nigeria</td>
</tr>
<tr>
<td>MANCAP</td>
<td>Mandatory Conformity Assessment Programme (Nigeria)</td>
</tr>
<tr>
<td>MCH</td>
<td>Maasai Cultural Heritage Organisation (Kenya)</td>
</tr>
<tr>
<td>MCST</td>
<td>Ministry of Communications, Science and Technology (Botswana)</td>
</tr>
<tr>
<td>MCT</td>
<td>Ministério da Ciência e Tecnologia (Mozambique)</td>
</tr>
<tr>
<td>MDCA</td>
<td>Malindi District Cultural Association (Kenya)</td>
</tr>
<tr>
<td>MDG</td>
<td>Millennium Development Goal</td>
</tr>
<tr>
<td>MEA</td>
<td>Multilateral Environmental Agreement</td>
</tr>
<tr>
<td>MIST</td>
<td>Ministry of Infrastructure, Science and Technology (Botswana)</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MOA</td>
<td>Ministry of Agriculture (Ethiopia)</td>
</tr>
<tr>
<td>MOE</td>
<td>Ministry of Education (Ethiopia)</td>
</tr>
<tr>
<td>MOFA</td>
<td>Ministry of Food and Agriculture (Ghana)</td>
</tr>
<tr>
<td>MoFED</td>
<td>Ministry of Finance and Economic Development (Ethiopia)</td>
</tr>
<tr>
<td>MOST</td>
<td>Ministry of Science and Technology (Ethiopia)</td>
</tr>
<tr>
<td>MoU</td>
<td>memorandum of understanding</td>
</tr>
<tr>
<td>MRC</td>
<td>Medical Research Council (South Africa)</td>
</tr>
<tr>
<td>Natoil</td>
<td>Natural Oil Company (Egypt)</td>
</tr>
<tr>
<td>NACI</td>
<td>National Advisory Council on Innovation (South Africa)</td>
</tr>
<tr>
<td>NCC</td>
<td>Nigerian Copyright Commission</td>
</tr>
<tr>
<td>NDA</td>
<td>non-disclosure agreement</td>
</tr>
<tr>
<td>NEP</td>
<td>National Enquiry Point (Botswana)</td>
</tr>
<tr>
<td>NEPAD</td>
<td>New Partnership for Africa’s Development</td>
</tr>
<tr>
<td>NESC</td>
<td>National Economic and Social Council (Kenya)</td>
</tr>
<tr>
<td>NESTI</td>
<td>National Experts on Science and Technology Indicators</td>
</tr>
<tr>
<td>NIALS</td>
<td>Nigerian Institute of Advanced Legal Studies</td>
</tr>
<tr>
<td>NRF</td>
<td>National Research Foundation (South Africa)</td>
</tr>
<tr>
<td>NGO</td>
<td>non-governmental organisation</td>
</tr>
<tr>
<td>NIALS</td>
<td>Nigerian Institute of Advanced Legal Studies</td>
</tr>
<tr>
<td>NIPMO</td>
<td>National Intellectual Property Management Office (South Africa)</td>
</tr>
<tr>
<td>NIS</td>
<td>national innovation system</td>
</tr>
<tr>
<td>NMIMS</td>
<td>Narsee Monjee Institute of Management Studies (India)</td>
</tr>
<tr>
<td>NPR</td>
<td>National Public Radio (US)</td>
</tr>
<tr>
<td>NPSB</td>
<td>National Policy and Strategy on Biofuels (Mozambique)</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Centre (Egypt)</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>NREA</td>
<td>New and Renewable Energy Authority (Egypt)</td>
</tr>
<tr>
<td>NWLR</td>
<td>Nigerian Weekly Law Report</td>
</tr>
<tr>
<td>OA</td>
<td>open access</td>
</tr>
<tr>
<td>OAPI</td>
<td>Organisation africaine de la propriété intellectuelle</td>
</tr>
<tr>
<td>OCEES</td>
<td>Oxford Centre for the Environment, Ethics and Society</td>
</tr>
<tr>
<td>OCFCU</td>
<td>Oromia Coffee Farmers Cooperative Union (Ethiopia)</td>
</tr>
<tr>
<td>ODEL</td>
<td>open, distance and electronic learning</td>
</tr>
<tr>
<td>ODI</td>
<td>Overseas Development Institute (UK)</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OER</td>
<td>open educational resource</td>
</tr>
<tr>
<td>Open A.I.R.</td>
<td>Open African Innovation Research and Training Project</td>
</tr>
<tr>
<td>ORD</td>
<td>Office of Research and Development (Botswana)</td>
</tr>
<tr>
<td>PBIP</td>
<td>place-based intellectual property</td>
</tr>
<tr>
<td>PCT</td>
<td>Patent Cooperation Treaty</td>
</tr>
<tr>
<td>Petromoc</td>
<td>Petróleos de Mozambique</td>
</tr>
<tr>
<td>PIIPA</td>
<td>Public Interest Intellectual Property Advisors (US)</td>
</tr>
<tr>
<td>PIJIP</td>
<td>Program on Information Justice and Intellectual Property (American University, US)</td>
</tr>
<tr>
<td>PPS</td>
<td>probability proportional to size</td>
</tr>
<tr>
<td>PRO</td>
<td>public research organisation</td>
</tr>
<tr>
<td>ProBEC</td>
<td>Programme for Basic Energy and Conservation in Southern Africa</td>
</tr>
<tr>
<td>R&D</td>
<td>research and development</td>
</tr>
<tr>
<td>RCIIPS</td>
<td>Research Contracts and IP Services unit (UCT, South Africa)</td>
</tr>
<tr>
<td>RIPCO (B)</td>
<td>Rural Industrial Promotion Company (Botswana)</td>
</tr>
<tr>
<td>RMI</td>
<td>rights management information</td>
</tr>
<tr>
<td>SADC</td>
<td>Southern African Development Community</td>
</tr>
<tr>
<td>SARUA</td>
<td>Southern African Regional Universities Association</td>
</tr>
<tr>
<td>SCE</td>
<td>Society for Critical Exchange (Kenya)</td>
</tr>
<tr>
<td>SID</td>
<td>Society for International Development (Kenya)</td>
</tr>
<tr>
<td>SINTER-GI</td>
<td>Strengthening International Research on Geographical Indications</td>
</tr>
<tr>
<td>SME</td>
<td>small and medium enterprise</td>
</tr>
<tr>
<td>SMIEIS</td>
<td>Small and Medium Industries Equity Investments Scheme (Nigeria)</td>
</tr>
<tr>
<td>SMME</td>
<td>small, micro and medium enterprise</td>
</tr>
<tr>
<td>SNA</td>
<td>social network analysis</td>
</tr>
<tr>
<td>SON</td>
<td>Standards Organisation of Nigeria</td>
</tr>
<tr>
<td>SPS</td>
<td>sanitary and phytosanitary measures</td>
</tr>
<tr>
<td>STCI</td>
<td>Science and Technology Capacity Index</td>
</tr>
<tr>
<td>STEP</td>
<td>Science Technology and Economic Policy (US)</td>
</tr>
<tr>
<td>STI</td>
<td>science, technology and innovation</td>
</tr>
<tr>
<td>STS</td>
<td>Society for Technology Studies (Ethiopia)</td>
</tr>
</tbody>
</table>
Acronyms and Abbreviations

SVKM Shri Vile Parle Kalamani Mandal (India)
TBT technical barriers to trade
TCE traditional cultural expression
TGE Transitional Government of Ethiopia
THE Times Higher Education (UK)
THRIP Technology and Human Resources Programme (South Africa)
TIA Technology Innovation Agency (South Africa)
TIP-Net Tanzania Intellectual Property Rights Network
TISC Technology and Innovation Support Center
TK traditional knowledge
TKDL Traditional Knowledge Digital Library (India)
TPMs technological protection measures
TRIPS Agreement on Trade-Related Aspects of Intellectual Property Rights
TTO technology transfer office
TVET Technical and Vocational Education and Training (Ethiopia)
UB University of Botswana
UCC Universal Copyright Convention
UCITA Uniform Computer Information Transactions Act (US)
UCT University of Cape Town (South Africa)
UEM Eduardo Mondlane University (Mozambique)
UGT Uganda Gatsby Trust
UK United Kingdom
UM utility model
UNCST Uganda National Council for Science and Technology
UNCTAD UN Commission on Trade and Development
UNDESA UN Department of Economic and Social Affairs
UNDP UN Development Programme
UNECA UN Economic Commission for Africa
UNEP UN Environment Programme
UNESCAP UN Economic and Social Commission for Asia and the Pacific
UNESCO UN Educational, Scientific and Cultural Organisation
UNFCCC UN Framework Convention on Climate Change
UNICAMP University of Campinas (Brazil)
UNIDO UN Industrial Development Organisation
Unilag University of Lagos
US United States
USAID US Agency for International Development
USPTO US Patent and Trademark Office
WAK Writers Association of Kenya
WATH West Africa Trade Hub

xxiii
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBCSD</td>
<td>World Business Council for Sustainable Development</td>
</tr>
<tr>
<td>WCT</td>
<td>WIPO Copyright Treaty</td>
</tr>
<tr>
<td>WEF</td>
<td>World Economic Forum</td>
</tr>
<tr>
<td>WEP</td>
<td>World Employment Programme</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>WIPO</td>
<td>World Intellectual Property Organisation</td>
</tr>
<tr>
<td>Wits</td>
<td>University of the Witwatersrand (South Africa)</td>
</tr>
<tr>
<td>WPIS</td>
<td>WIPO Patent Information Service</td>
</tr>
<tr>
<td>WPPT</td>
<td>WIPO Performances and Phonograms Treaty</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organisation</td>
</tr>
<tr>
<td>ZAR</td>
<td>South African Rand</td>
</tr>
</tbody>
</table>
Chapter 13

Effects of the South African IP Regime on Generating Value from Publicly Funded Research: An Exploratory Study of Two Universities

Caroline Ncube, Lucienne Abrahams and Titilayo Akinsanmi

Abstract

This study analyses evidence from two South African universities of how innovation activity and research dissemination are being influenced by a new intellectual property (IP) commercialisation law for publicly funded research outputs. The study sought to understand the ways in which the Intellectual Property Rights from Publicly Financed Research and Development (IPR-PFRD) Act of 2008 and its Regulations influence the generation of value from research. The study was positioned within a theoretical frame which holds that maximalist approaches to IP protection tend to be sub-optimal for certain long-term socio-economic objectives inherent in research funding. The research found evidence of adaptation by both of the universities studied (UCT and Wits University) to the requirements of the Act, and evidence that the Act can have a positive influence on South Africa’s innovation nexus provided that the Act’s patenting orientation continues to be complemented by openness-oriented research dissemination and collaboration practices, including open access (OA) scholarly publishing.

1. Introduction and research design

The research outlined in this chapter investigated the potential impact of South Africa’s Intellectual Property Rights from Publicly Financed Research and Development (IPR-PFRD) Act 51 of 2008 and its 2009 Regulations on the commercialisation of research and on research dissemination, including scholarly publishing. The study focused on practices at two leading public universities: the University of Cape Town (UCT) and Johannesburg’s University of the Witwatersrand (Wits University).
The IPR-PFRD Act of 2008 and its Regulations of 2009 (which became effective in 2010) seek to promote the protection and commercialisation of intellectual property (IP) generated through South African public funding. The Act applies to IP emanating from publicly financed research and development (R&D), which is defined in Section 1 as “research and development undertaken using any funds allocated by a funding agency but excludes funds allocated for scholarships and bursaries”. In particular, it applies to South Africa’s higher education institutions, to its 10 listed research councils, and to any other institutions that shall be identified by the Minister of Science and Technology in the future (Sect. 1 and 3(2), and Sched. 1, of the Act). The Act and Regulations have been critiqued (Barratt, 2010; Chetty, 2009/2010; Gray, 2010) from a number of perspectives, including charges that they:

- may be counter-productive to achieving the objectives of promoting commercialisation;
- may have too broad an approach to conceptualisation of commercialisation, i.e. include knowledge that should be socialised rather than commercialised;
- approach IP protection in ways that may present potential obstacles to scholarly publication; and
- have provisions that may be unnecessarily onerous for universities and academics.

The critiques made to date have been primarily theoretical. The research presented in this chapter sought an evidence-based understanding of the effects of the Act and Regulations on research, innovation and scholarly publishing.

A mixture of research methods was employed: a legal doctrinal analysis and review of annual reports on UCT and Wits research were supplemented by interviews with leading academics who have created patentable inventions and also publish extensively, and senior administrators responsible for research productivity at the two universities. The study focused on research in health sciences and engineering sciences, two research fields which are among the “top 21” scholarly publishing fields in South Africa (Abrahams and Akinsanmi, 2011; Mouton et al., 2008). The research did not aim to be a comparative case study between UCT and Wits, but rather to separately explore the experiences of UCT and Wits in order to find out what could be learned from each case.

Particular inter-relationships are believed to exist between innovation, closed or open IP systems, and socio-economic development, with these inter-relationships seen as sometimes being mutually supportive while at other times being in conflict (Bünemann, 2010; Gray, 2009/2010; Hargreaves, 2011). These inter-relationships, and the extent to which they exist, need to be better understood if research productivity and value are to be maximised.
Accordingly, this study included the following elements in its examination of the two selected fields of research (health sciences and engineering sciences) at UCT and Wits:

- identification of major research producers;
- investigation and cataloguing of research, innovation practices and scholarly publishing; and
- investigation of the potential effects of the Act and Regulations on the work of research administrators, IP creators and research collaborations.

The overarching research question was: How does South Africa’s 2008 IP commercialisation law potentially impact research, innovation and scholarly publishing in key fields at universities? Three sub-questions were designed to answer the main question:

- Prior to the Act, how did universities approach IP generated by their scientific research output?
- What are the potential effects of the Act and Regulations on universities’ IP protection and commercialisation of innovation?
- To what extent are universities’ publicly funded research results being communicated through scholarly publishing channels, i.e. paid access and/or open access (OA) publication approaches, and to what extent are these approaches being impacted by the Act and Regulations?

UCT and Wits were selected for study based on their high levels of research performance and contribution to South Africa’s national system of innovation. They are among South Africa’s leading research-producing universities and have been identified as two of the major research universities in the southern African region (Mouton et al., 2008). Thus, they were selected as critical, not typical, research settings in South Africa, as per Patton’s (2002) research methodological distinction, i.e. the relatively narrow focus on UCT and Wits meant that there would be only limited general applicability of the research findings to other South African universities.

First, an analysis was conducted of relevant South African policy, and the IPR-PFRD Act and Regulations, in order to establish the legal requirements for publicly funded research institutions. Second, UCT’s and Wits’s annual research reports for 2010 and 2011 were analysed. Third, semi-structured interviews probed the experiences and perceptions of patent-holding academics and research managers who administer IP commercialisation at each university. Purposive sampling (Denscombe, 2010) was used to identify participants who could provide in-depth knowledge and experiential insights into the Act and Regulations and their practical implications. The criteria used to identify suitable researcher-inventor
interviewees included strong research and publishing records and evidence of patent holdings. Identification of interviewees was done in consultation with relevant academic management at UCT and Wits, and with reference to the universities’ research and innovation reports. The data were collected through document analysis and through interviews with nine key informants at UCT and Wits University: five researcher-inventors and four research-IP managers. The four research-IP manager interviewees were drawn from the UCT Research Contracts and IP Services office (RCIPS) and from Wits Commercial Enterprise (Pty) Ltd. (Wits Enterprise). The data were analysed thematically in order to determine the common and distinctive perceptions, at each university, of the extent of the impact of the Act on generating benefit from publicly funded research.

2. Conceptual framework

The study was grounded in several conceptual assumptions, as outlined in the subsections which follow.

IP protection

IP is created when new knowledge or creative work enjoys protection under common law or acquires a proprietary right pursuant to legal frameworks governing patents, copyrights, trademarks and trade secrets. Commercialisation of IP occurs when the value of new knowledge or creative work is realised in the marketplace through an IP vehicle that results in financial return (Geuna and Nesta, 2006). In a recent review of the IP environment in the UK, Hargreaves (2011) states that the UK IP framework has a tendency to act as a significant drag against innovation and economic growth. The Hargreaves Report finds this to be true not just within the creative works domain but increasingly and extensively with respect to business and academic innovation. South Africa, as a former British colony and a member of the Commonwealth, has an IP framework that, in many respects, reflects that of the UK. It follows, then, that some of the problems identified by Hargreaves with the existing UK IP framework may also characterise the South African context.

Central to this study’s focus on connections between IP protection, commercialisation and research publishing is the contention that IP protection has the potential to limit access to knowledge (A2K), via explicit and/or implicit barriers, and that such limits on A2K undermine the balancing mechanisms inherent in the notion of IP protection. IP protection is not supposed to stifle A2K. In extreme instances, the protection of research findings via IP can constitute knowledge
hoarding. Such hoarding has been found to lead to the “under-utilisation of research findings” (NACI, 2003). Access is necessary to allow others to build on prior knowledge, and IP should ideally improve conditions for sustained creativity and innovation. This research was premised on a view that knowledge will tend to have greater socio-economic impact where it is shared and utilised.

The aforementioned Hargreaves Report (2011) argues for increased flexibility in the publishing of publicly funded research. Hargreaves addresses the potential conflict between, on the one hand, facilitation by digital communication technologies of “the routine copying of text, images and data” (2011, p. 3) and, on the other hand, closed-off online sources operating within a framework of laws that constitute a regulatory barrier to the creation of new knowledge and business development. Hargreaves proposes the development of a “digital copyright exchange” (2011, p. 3) designed to increase consumer confidence in the use of copyrighted material for both private and public benefit. The Report advises that “there should be a change in rules to enable scientific and other researchers to use modern text and data mining techniques, which copyright prohibits” (2011, p. 4).

Commercialisation

Commercialisation of research output is typically premised on the acquisition of IP protection. In order to realise the value contained in the IP, the entity seeking to commercialise it must have an established proprietary right over the knowledge via an IP right. Such a process of commercialisation requires a robust approach to IP protection. It is important to note, however, that securing patent protection is not a guarantee that commercialisation will succeed.

Knowledge socialisation

Knowledge socialisation, or “socialisation of knowledge” as it is referred to in the relevant literature, involves the adoption or uptake of norms, customs and ideologies through which social, cultural and economic continuity are sustained (Halloran, 2011; Nonaka, 1991; Plaskoff, 2011). The concept applies to non-commercial integration of knowledge in society. The socialisation of knowledge is underpinned by one major imperative – that knowledge is shared. Sharing allows the knowledge to develop, as it is adopted and adapted by various sections of society. In the context of academic research and publishing, the ability of researchers to disseminate knowledge into the public domain significantly determines the extent to which such knowledge becomes socialised. Advances in technology have opened up myriad ways for knowledge to be rapidly socialised. Some consequences may be negative, i.e. in the internet age, untried, untested and sometimes
unfounded knowledge can become social knowledge and prematurely become “truth”. However, the positive consequences of rapid knowledge socialisation are substantial, with readily and rapidly accessible knowledge contributing to reductions in socio-economic inequality (De Assumpção, 2005).

Scholarly publishing

The trend towards the use of OA publishing, whereby works are made freely available online with minimal copyright restrictions, continues to grow in strength in relation to both learning materials and scholarly works. Proponents for and against OA publishing both agree that research findings should optimally benefit society. Some OA proponents argue that, where research publishing continues to be organised within the traditional closed access framework, only very slow increases will occur in the pool of quality researchers (Abrahams *et al.*, 2008).

At the same time, however, it must be borne in mind that the push towards OA can be daunting in developing countries, because the online platforms through which OA thrives are undermined in contexts where there are low levels of broadband internet access at higher education institutions. Online scholarly publishing is generally low in institutions located in developing countries and universities (Chan and Costa, 2005). Many scholars are restricted to publishing in Institute for Scientific Information (ISI) journals. Others publish in unrecognised platforms or fail to publish due to various restrictions, incapacities or resource limitations. Reductions in university library budgets, together with the increased cost of journals, foster demand for free access and alternative approaches to scholarly publishing and knowledge dissemination. OA publishing is a relatively inexpensive and inclusionary way of addressing this need but, at the same time, existing access barriers to publication are replicated in the digital world. Transitioning to OA publishing also generates issues of quality assurance, to ensure that research quality, credibility and ownership are not undermined.

Valuable, development-focused research is produced in Africa on an ongoing basis. While increasingly accessible online, dissemination of such research output is still considered low in the international context. In a report for Australia’s Department of Education, Science and Training (DEST), Houghton *et al.*, (2006) recommend that greater levels of access to publicly funded research may be promoted by

 [...] [e]nsuring that the Research Quality Framework supports and encourages the development of new, more open scholarly communication mechanisms, rather than encouraging a retreat by researchers to conventional publication forms and media, and a reliance by evaluators upon traditional publication metrics (e.g., by ensuring dissemination and impact are an integral part of evaluation). (Houghton *et al.*, 2006, p. XIII)
Open science, open knowledge, open research

Interrogating the value of OA for research productivity, visibility, accessibility and knowledge in South Africa needs to be approached from a multi-disciplinary perspective. This entails moving beyond consideration of copyright and IP laws and traditional boundaries of scholarly publishing into consideration of the potential, offered by OA publishing, of what is sometimes referred to as “open science”, “open knowledge” or “open research”. The openness orientation implied by these terms entails the prioritisation of wide dissemination and sharing of the outputs of scientific research. This approach requires institution-wide commitment and change at universities. It requires the creation and/or strengthening of a research value chain that incorporates all levels of the academic hierarchy engaged in researching, writing and publishing. Abrahams et al. (2008) propose a framework “based on open knowledge approaches to knowledge production, publishing and dissemination in response to identified constraints and challenges to a productive academic research and publishing sector” (2008, p. 9).

This research endeavour thus combined consideration of ideas around IP commercialisation with consideration of the dynamics of knowledge socialisation and of the many transitions that are possible for managing IP and disseminating knowledge.

3. Findings Part 1: the Act and Regulations

Evolution of the South African approach, 1996 to 2012

The Act and Regulations have their roots (see Figure 13.1) in the government’s 1996 White Paper on Science and Technology, which flagged the need for an IP regime that encourages innovation (DACST, 1996, Chap. 6). This orientation was reiterated in the Department of Science and Technology’s (DST’s) 2002 National Research and Development (R&D) Strategy, which lamented the absence of a formal policy framework for IP protection of publicly financed research and expressly mentioned the US Bayh–Dole Act as a model to emulate (DST, 2002, pp. 22, 67). The R&D Strategy was partially implemented by the creation of the Intellectual Property Rights from Publicly Financed Research Framework in 2006, which formed the blueprint for the eventual IPR-PFRD Act of 2008. The Framework preceded the publication by the Department of Science and Technology (DST) of a Ten-Year Innovation Plan in 2008 that identified financing and IP management as major challenges to successful IP commercialisation. Accordingly, the Ten-Year Plan provided for creation of the Technology Innovation Agency (TIA) to provide funding, and creation of the National IP Management Office (NIPMO)
“to enhance protection of IPRs” (DST, 2008, pp. 22–23). Ultimately, the essential elements of the IP Framework articulated via the foregoing developments were enacted as the Act in 2008, supplemented by the Regulations of 2009 (effective in 2010).

Meanwhile, since the mid-2000s, the Academy of Sciences of South Africa (ASSAf) has sought to promote OA publishing. By 2011, ASSAf had adapted the Brazilian Scielo OA publishing platform to create Scielo South Africa, encouraging South Africa’s top scholarly journals to locate there. In 2012, Scielo South Africa was endorsed by international publishing firm Thomson Reuters’s Web of Science scientific citation platform, meaning that authors publishing in a journal hosted by Scielo South Africa are recognised to have published in a Web of Science indexed journal. At the National Scholarly Editors’ Forum convened by ASSAf in July 2012, the Department of Higher Education and Training (DHET) indicated that it was considering requiring all accredited South African journals to publish either on the Scielo South Africa platform or on another internationally recognised platform such as Web of Science. Also in 2012, DHET’s Green Paper for Post-School Education and Training in South Africa, released in February of that year, prioritised open educational resources (OERs), i.e. learning objects made freely available online with minimal copyright or usage restrictions.

Figure 13.1: Evolution of the South African approach: timeline

Source: Authors’ data collection.
Rationale

At the time of the IPR-PFRD Act’s formulation, it was argued that the Act was essential to encourage publicly funded research institutions to be innovative and productive in the knowledge economy (DST, 2006, pp. 5–7). The lack of a national IP protection and commercialisation framework, it was argued, prejudiced South Africa because publicly funded research was being underutilised (NACI, 2003) and IP was being “lost to foreign jurisdictions” or “sitting on shelves” and failing to contribute to national socio-economic development (Sibanda, 2011). South Africa’s poor patent profile was cited as an indicator of “a major weakness in South Africa’s ability to become a full player in the global knowledge economy” and “[i]ncreasing patenting activity” and “building capacity in entrepreneurship and technology transfer within publicly funded institutions” were identified as remedial solutions (DST, 2006, p. 15). The legislation therefore provides for protection and commercialisation of IP from publicly funded research and places restrictions on offshore IP transactions to limit the loss of IP to foreign jurisdictions. There were also perceptions that a lack of clear incentive and benefit-sharing formulae were resulting in an environment with little or no motivation for researchers to innovate and commercialise inventions. The legislation, therefore, provides for benefit-sharing to incentivise researchers, an approach seemingly inspired by the approach adopted in the US via the provisions of the 1980 Bayh-Dole Act (see Chapters 14 and 15 of this volume for examples of attempted Bayh-Dole-type orientations in Ethiopia and Botswana, respectively).

Primary intent of the IPR-PFRD Act

The Act of 2008 defines “commercialisation” as

[...the process by which any intellectual property emanating from publicly financed research and development is or may be adapted or used for any purpose that may provide any benefit to society or commercial use on reasonable terms, and “commercialise” shall have a corresponding meaning. (Sect. 1 of the Act)]

This definition is expounded by Section 1 of the Regulations, which defines “benefits” as:

[...] contribution to the socio-economic needs of the Republic and includes capacity development, technology transfer, job creation, enterprise development, social upliftment and products, or processes or services that embody or use the intellectual property. (Sect. 1 of the Regulations)

These definitions result in a problematic conflation of IP commercialisation with socialisation of knowledge. The underlying theoretical perspective that
inform{s} the Act does not recognise the differing trajectories between research which is commercialised via IP protection and research which is socialised via sharing.

While the legislation requires attempted acquisition and commercialisation of IP generated from publicly funded research, the Act excludes from its provisions “copyrighted works such as a theses, dissertation[s], article[s], handbook[s] or any other publication which, in the ordinary course of business, is associated with conventional academic work” (Sect. 1 of the Act). Trademarks and designs are included in the provisions of the Act, and institutions may choose to use trade secrets as a form of protection. The legislation's emphasis on patenting as a means of economic development fails to recognise that patents do not always lead to commercialisation and economic growth (Webster and Jensen, 2011, p. 447). The legislation could, for instance, prod institutions to build large patent portfolios with little prospect for commercialisation, i.e. portfolios of weak patents barely meeting the statutory patentability requirements. Such a phenomenon is possible in South Africa because South Africa does not examine patent applications (see Chapter 10, this volume, for discussion on lack of patent application examination processes in Africa). The DST acknowledges that "patenting for the sake of patenting is not adequate", but argues that a focus on patenting is a prerequisite for successful commercialisation in alignment with South Africa's technological growth strategy (Sibanda, 2007, p. 31).

Meanwhile, despite the exclusion of copyrighted scholarly publications from its provisions, the Act's focus on patenting could still have a negative effect on written academic output. Rapid publication of research findings relating to potentially patentable inventions could potentially have to be curtailed in order to prevent the compromise of novelty requirements for patentability. If publications were to be routinely delayed (for the lengthy periods of time required to formalise a patent application), this would have a chilling effect on written scholarly outputs, making South African scholars less competitive on the global stage of academic exchange and less able to participate in the aforementioned open science and open knowledge paradigms.

Key provisions

Several provisions in the Act and Regulations have the potential to be counterproductive. Section 1 of the Act defines IP as:

[A]ny creation of the mind that is capable of being protected by law from use by any other person, whether in terms of South African law or foreign intellectual property law, and includes any rights in such creation, but excludes copyrighted works […] (Sect. 1 of the Act, emphasis added)
Innovation & Intellectual Property

The inclusion of foreign IP law means that South African institutions are required to obtain statutory protection in foreign jurisdictions, even if the R&D in question is ineligible for IP protection in South Africa (Tong, 2010, pp. 409–10). This extension is understandable given that the underlying objective of the legislation is to increase South African local and international patenting. However, the extension raises two concerns. First, South African institutions will now have to ensure they possess adequate knowledge of foreign IP law, so that the required international protection is obtained. Second, acquisition of international IP protection is lengthy and costly, placing a heavy burden on institutions. The legislation seeks to answer these concerns by providing for partial or full funding for the “development of appropriately skilled personnel” in institutions through NIPMO (Sect. 6(4)(b)(iii)), and by establishing a national IP fund to finance institutions’ acquisition and maintenance of local and foreign statutory IP protection (Sect. 13(2)(a)).

Institutional infrastructure

NIPMO, which oversees the Act (Sect. 8–9) and the IP fund, is mandated to financially support, manage and protect onshore and offshore IP efforts of publicly funded research institutions (Sect. 13). The Act provides for institutions to separately or collaboratively create technology transfer offices (TTOs) with the support of NIPMO. TTOs are to be “responsible for undertaking the obligations of the institution” (Sect. 6(1) and 6(3)) in respect of management of the identification, protection, development and commercialisation of IP, and to provide mandatory biannual disclosures to NIPMO (Sect. 5 and 7).

IP ownership and statutory protection

The Act provides for institutions, rather than researchers, to own IP derived from publicly financed research (Sect. 4(1)). However, where the full (as opposed to partial) cost of the research is privately funded, the IP does not fall within the ambit of the Act, i.e. the IP does not rest with the institution, but rather with the private funder (Sect. 15(4) of the Act).

The Act defines private entities or organisations as “a private sector company, a public entity, an international research organisation, an educational institution or an international funding or donor organisation” (sect. 15(5)). (This inclusion of “public entity” in the definition of a “private entity” is odd and, in the absence of a detailed explanatory memorandum accompanying the Act, is difficult to explain.)

The precise meaning of “full cost” has to be made clear within the policy precepts of the institution, with full cost funding generally meaning that the funder...
pays the full cost of the research (including overheads) and, subject to agreement with the institution, owns any resulting patents. For partially privately funded research, the private funder takes precedence and must be offered the option to acquire ownership and statutory protection for the IP. The Act does not provide for, or stipulate, any level or threshold that must be passed by a partial funder in order to earn entitlement to be offered ownership of the IP. The Act merely provides that “where a private entity or organisation had provided some funding” it should be offered ownership of the IP ahead of the IP creator (Sect. 4(4)(b) of the Act). Therefore, such an offer must be made to any partial funder regardless of the extent of the funding granted by that funder.

When institutions choose to forfeit ownership and statutory protection of IP from a research undertaking, they must notify NIPMO and provide reasons (Sect. 4(2)). Section 2 of the Regulations provides factors that must be considered by institutions in making such a choice. These include South Africa's socio-economic needs, the costs and advantages of possible IP protection, the potential for commercialisation, and whether the IP should be placed in the public domain. Should the balance of factors lie with retaining ownership and obtaining IP protection but the institution chooses to do neither, NIPMO may, upon referral from the institution (Sect. 2(4) of the Regulations), acquire ownership of the IP and seek statutory protection. NIPMO can do so if it is of the view that the state would be prejudiced if statutory protection were not obtained (Sect. 4(3) of the Act).

When the balance of factors does not lie with securing IP ownership and protection – i.e. neither the institution nor NIPMO wishes to acquire IP ownership and protection – the institution must give the researcher(s) who created the IP the option to assert ownership and obtain IP protection (Sect. 4(4)(b) of the Act and Sect. 4(10)–(11) of the Regulations).

IP transactions

The Act also regulates IP transactions, which are defined as:

>Any agreement in respect of intellectual property emanating from publicly financed research and development, and includes licensing, assignment and any arrangement in which the intellectual property rights governed by this Act are transferred to a third party. (Sect. 1 of the Act)

The Act preserves the right of institutions to determine the type and terms of IP transactions they enter into, provided preference is afforded to non-exclusive licensing, to broad-based black economic empowerment entities (as per South Africa's B-BBEE Act 53 of 2003), to small businesses and to parties who intend to use the IP for the benefit of South Africa's economy (Sect. 11(1)(a)–(c)). Section
11(1) of the Regulations provides for the terms of non-exclusive licences to be determined “on an arms-length basis”. NIPMO’s approval must be obtained in cases where the “consideration payable by a licensee to a recipient is not determined on an arms-length basis”, or where royalty-free licences are granted, or where offshore exclusive licences are granted and/or where assignments of IP are made locally and offshore (Sect. 11(2) of the Regulations).

Conditions that apply to all licences

Section 11(1)(e) of the Act states that each IP transaction must provide the state with an irrevocable and royalty-free licence authorising the state to use or have the IP used throughout the world for South Africa’s health, security and emergency needs. Section 11(2) of the Act provides that each IP transaction must contain a condition that “should a party fail to commercialise the intellectual property to the benefit of [South Africa], the State is entitled to exercise” walk-in rights provided for in Section 14 (see “state ‘walk-in’ rights” sub-section below). Section 11(3)(a) of the Act provides that where the relevant IP is assigned to a small business, the assignment agreement must contain a condition that if the business is liquidated, the IP will revert to the institution.

Conditions that apply only to exclusive licences

Section 11(1)(d) of the Act requires that “exclusive licence holders must undertake, where feasible, to manufacture, process and otherwise commercialise” the invention in South Africa, failing which NIPMO has the power to request that the exclusive licence be converted into a non-exclusive licence.

Conditions that apply to offshore transactions

Section 12 of the Act requires institutions to notify NIPMO and to obtain its approval before concluding offshore exclusive IP transactions (exclusive licences and assignment), i.e. licences and assignments granted outside South Africa. Such approval will only be given pursuant to a number of considerations, including the requirement that NIPMO is satisfied that there is insufficient capacity within South Africa to commercialise the IP.

State “walk-in” rights

Sections 14(2) and 14(3) of the Act and Section 14(1) of the Regulations require NIPMO to conduct annual reviews of non-commercialised IP in consultation
with publicly funded research institutions. Should an institution fail to commercialise the IP after review and consultation, NIPMO may require the institution to grant a licence to a third party (Sect. 14(4) of the Act). The institution will be afforded an opportunity to challenge the exercise of the state’s walk-in rights prior to NIPMO’s final determination (Sect. 14(2) of the Regulations). Overall, the exercise of walk-in rights by the state must be reasonable and balanced in relation to other competing rights and must terminate once the specific health, security or emergency need has been met (Sect. 14(7) of the Regulations).

Benefit-sharing

Creators of IP from publicly funded research (or the creators’ heirs) are entitled, under Section 10, to at least 20% of the first ZAR 1 million in revenues generated by the IP. They are also entitled to at least 30% of the net revenues in excess of the first ZAR 1 million earned. Revenues are to be shared equally among creators unless another benefit-sharing formula has been agreed to previously (Sect. 10(3)). Creators are entitled to timely access to monetary and non-monetary incentives (Sect. 19(1)). Section 9(3) of the Regulations also requires institutions to develop policies for sharing non-monetary benefits with IP creators for approval by NIPMO.

4. Findings Part 2: UCT and Wits University

The two studies, of research and IP management realities at UCT and Wits University, respectively, took different directions. These differences resulted to some extent from differences in data availability and to some extent from differences between the matters identified in each setting, during the course of the research, as being worthy of investigation and analysis.

UCT

Research and innovation indicators

UCT’s IP Policy was amended in 2011 to implement the provisions of the Act (UCT, 2011b). The Policy addresses the role and duties of UCT’s TTO, the roles and duties of UCT’s Intellectual Property Advisory Committee, the ownership of IP, IP commercialisation and dispute resolution. UCT’s *Innovation at UCT 2011* report outlines the institution’s IP and commercialisation efforts, which are summarised in Table 13.1.
Researchers in the Department of Chemical Engineering, the Department of Molecular and Cell Biology and the Institute of Infectious Disease and Molecular Medicine (IIDMM) are among UCT’s top inventors, as evidenced by their very high publishing outputs (UCT, 2010, pp. 7–8). Recent research in these departments has been focused on minerals, the creation of human and animal vaccine candidates, preventive HIV vaccines, anti-malarial drug discovery and the development of a device that enables in situ evaluation of ferro-metallic catalysts (UCT, 2010, pp. 17–27, 65).

Administration perspectives

UCT’s TTO function is performed by its RCIPS office, which in the last few years has focused its efforts on implementing the IPR-PFRD Act and Regulations. RCIPS
has conducted a campus-wide education and awareness campaign, and runs seminars aimed at creating awareness about the Act and demonstrating UCT’s compliance arrangements. According to an RCIPS staff member interviewed, there are minimal negative impacts on IP commercialisation under the Act, but implementation has presented practical challenges. For instance, researchers interested in socialising their ideas at conferences or through publication may face constraints or delays because of the prioritisation of patent filing. The interviewee said that, with proper planning, however, a patent application could be filed prior to conference presentations or publication. RCIPS strives to assist UCT’s academics and researchers to “fit IP protection seamlessly into the publication or thesis submission process” (RCIPS interviewee, 2012).

However, in the RCIPS interviewee’s opinion, it was not necessarily ideal for commercialisation of research to be mandated by legislation. While it was appreciated that the intent of the legislation was to more concretely motivate a reflective approach to commercialisation by publicly funded institutions, some research lends itself more readily to commercialisation, and thus implementation of the Act has to be reasonable and bear such distinctions in mind. The RCIPS interviewee also said that other elements of South African IP protection could be amended to become more conducive to commercialisation. For example, the fact that South African patents are not substantively examined leads to “commercial uncertainty, as the claims have not been tested by examination and can only be contested in court – which is an expensive process” (RCIPS interviewee, 2012). Funders are understandably hesitant to invest when faced with this state of unpredictability over the future of a patented invention.

Another concern voiced by the RCIPS interviewee related to the lack of funding for development of early-stage IP:

This [early-stage funding] is scarce and significantly impedes actual transfer of technology. There is a need for development to mature the IP within a university to fashion it into a commercialisable form [...] I think that there is a need for a parallel stream of people working on development, rather than research, to focus on translating research findings into tangible outputs that can be of relevance in the marketplace. (RCIPS interviewee, 2012)

A UCT researcher-inventor interviewee stated that full funding by industry of South African university research (necessary for the funder to acquire full rights to the IP in terms of the Act of 2008) is “uncompetitive and expensive” (UCT researcher-inventor interviewee, 2012). As a reflection of this sentiment, the interviewee pointed to a small but significant loss of industry-contracted research at UCT. The interviewee stated that barriers also arise from the need to seek NIPMO permissions for certain IP transactions, as per the Act. This requirement
lengthens research contract negotiations and their implementation, making the process more expensive and less attractive to industry.

Also having a potentially chilling effect on research funding, said a UCT interviewee, is uncertainty about the exercise of state walk-in rights in terms of the Act. Funders are unsure of how the government will exercise these rights and may be unwilling to invest in a project that may be subject to the exercise of such rights. An additional burden cited by a UCT interviewee is the fact that the university has had to increase its screening work, because more researchers are informing RCIPS of their inventions so that they can be scrutinised for patentability. Researchers now disclose everything, including borderline inventions. Before the Act, only clearly patentable inventions were disclosed (UCT researcher-inventor interviewee, 2012).

At the same time, it was argued by one UCT interviewee that the Act does not constrain socialisation of research, if one defines socialisation as compatible with both financial and non-financial returns from publicly funded research. This interviewee argued that the requirement that researchers screen their work for protectable IP prior to public disclosure may result in more reflective practices among scholars, due to the awareness raised and the duties imposed by the legislation. This interviewee went on to say that UCT research had habitually been socialised and identified with significant “societal benefit” prior to the introduction of the legislation, and the Act will not have an impact on this emphasis on socialisation. At UCT, the interviewee argued, societal benefit is a core objective and not “something that one will measure by monitoring protectable IP rights” (UCT researcher-inventor interviewee, 2012).

Indeed, evidence was found of significant knowledge socialisation by UCT researchers, through both traditional and emerging scholarly publishing and distribution channels. UCT has an online research portal through which its staff and postgraduate students can manage their research. UCT also disseminates publications and other research outputs through an open-licensed website called UCT OpenContent (http://opencontent.uct.ac.za), where Creative Commons (CC)-licensed learning materials are published. UCT motivates scholarly publishing by providing career progression and research funding incentives to academics who publish regularly. UCT uses open source software and CC licences to ensure wide promotion and dissemination of the knowledge it generates (UCT, 2011b). Many UCT researchers enter competitions and receive awards for their work, affording them opportunities for wider engagement beyond publishing. UCT also supports events and competitions that disseminate knowledge, and it seeks to report specifically on the societal contributions of its research and innovation. In 2011, UCT signed the 2002 Berlin Declaration on Open Access, affirming its commitment to distribution of UCT research output on an OA basis.
Another UCT researcher-inventor interviewee argued that the Act may hinder the socialisation of knowledge – because of the need, mentioned above, to consider obtaining IP protection before engaging in research dissemination. However, even this interviewee stated that in many instances, the cost of the publication delay would likely be outweighed by the benefits of commercialisation.

The RCIPS interviewee stated that there might be difficulties in situations where IP is jointly created or shared, resulting in a situation where one of the parties (i.e. UCT) is required to comply with the Act while others may not be required to do so. This would be the case where the other parties are not publicly funded and thus not obliged to comply with the Act. The interviewee expressed hope that NIPMO would issue guidelines addressing this concern. Thus far, UCT has negotiated such situations by obtaining the necessary approvals from collaborating partners. However, obtaining these approvals invariably delays the conclusion of an agreement. Meanwhile, some philanthropic donors do not use a full-cost pricing model (which would entitle them to the IP rights) and instead seek alternative approaches to IP protection, such as direct IP transfers to them, which are subject to NIPMO approval.

RCIPS often works with researchers and inventors to prepare patent applications. It was stated that NIPMO compliance is onerous for RCIPS, but that UCT’s administrative practices (e.g. the use of databases) and the provision of funding by NIPMO to finance capacity enhancement are mitigating the burden. The RCIPS interviewee said that capacity development funding is critical because universities have to be

[... suitably capacitated to cope with the implementation of the IPR Act – both in terms of human resources [and] skills transfer to the research community, and [in terms of] funding both to support early commercialisation as well as to pay for patent application and maintenance. (RCIPS interviewee, 2012)

Researcher-inventor perspectives

The UCT researcher-inventor interviewees generally reported that they favour the notion of open research, i.e. they favour extensive dissemination and publication of their research findings, and participation in international research consortia. They also stated that it is critical that resources are not wasted, that research is properly directed, and that appropriate benefits accrue from their research. The interviewees reported that they employ both full-cost and partial-cost funding models. Sometimes the full-cost model of funding entails limitations on related publications and strict regulation of confidentiality through the use of non-disclosure agreements (NDAs). In contrast, the partial-cost model is one in which the funder does not cover all costs and therefore does not own the IP (but must,
in terms of the Act, be offered the opportunity to acquire the IP). As noted above, this is in all cases where partial funding, regardless of extent, has been provided. Frequently, such funders only seek royalty-free use of the final product or process for five years, with the result that UCT researchers working on such projects have no restrictions related to publishing, conference presentations or other modes of socialisation of the knowledge they produce.

One researcher-inventor interviewee expressed concern that the full-cost model may starve some companies, who are unable or unwilling to provide full-cost funding of research inputs. The Act may also block UCT relationships with other universities because of the restrictions imposed by NDAs (interviewee, 2012). It was also stated by a researcher-inventor interviewee that, when a project has multiple funders, there may be difficulties in gaining consensus on matters of IP ownership.

The UCT researcher-inventor interviewees stated that academic publishing is their main mode of knowledge dissemination, and that the Act does not necessarily inhibit this kind of knowledge socialisation because delays occasioned by the need to maintain secrecy prior to the filing of a patent application can be minimised by proper planning. For instance, a provisional patent specification can be filed on short notice in a case where a researcher needs to make a presentation at an international conference that could potentially undermine the novelty of an invention if presented in advance of a patent application. There was consensus among UCT researcher-inventor interviewees that implementation of the Act must seek to minimise any negative impact on scholarly publishing. One researcher-inventor interviewee stated that “publishing, collaboration and the free exchange of info between the people in the world engaged in our area of research is the only way forward” (UCT researcher-inventor interviewee, 2012).

At the same time, UCT researcher-inventor respondents expressed the belief that if, for instance, students had to delay publishing their theses because of the requirements of the Act, it would in most cases be an acceptable trade-off relative to the potential benefit that could accrue from a related patent and from the student’s participation in patentable innovation. One researcher-inventor interviewee recounted how a student had become co-author of a patent derived from joint research conducted jointly by the interviewee and the student. The licensing of the patent had resulted in significant benefits for the student.

Wits University

Research and innovation indicators

Wits engages in multiple international research collaborations and has plans to establish six global research institutes (Wits University, 2010). In 2010, Wits had
research funding in excess of ZAR 426,691 million, of which ZAR 102,591 million constituted public funding from the National Research Foundation (NRF), the Medical Research Council (MRC) and other government departments and science councils, while ZAR 75,751 million came from external sources, including the private sector and philanthropic donations. The rest came from miscellaneous sources. The largest volume of research output in 2010, including graduate work, was in the Faculty of Humanities (433 research units), followed by the Faculty of Science (418 units) and the Faculty of Health Sciences (366 units). Most patentable inventions stemmed from faculty members in Science, in Health Sciences, and in the Faculty of Engineering and the Built Environment.

Patent filing

Working from its 2003 IP Policy, Wits has effectively complied with the Act, transferring IP from inventors to the university, in the process securing “a cupboard full of patents [while] the challenge is to take the stuff out of the cupboard, get it out to the market and have an impact on society” (Wits Enterprise, 2012). Historically, according to Wits Enterprise, the university has handled patenting more as an academic exercise, spending on patenting but not on transferring patents into outcomes. In the future, patenting decisions would need to be based on all available information, in order to patent only where it will create value. The Act also requires universities to drive IP for societal benefit, which, arguably, includes economic benefit. Of these two approaches, patenting comes with the biggest formal overhead and expense (Wits Enterprise, 2012). One of the key challenges for the TTO remarked on by Wits Enterprise is to find ways to assist researchers in becoming proficient in IP management. The institutional perspective is that there is an onus on academic researchers to work for the public good, and the Act guarantees that the inventor will share in the financial and non-financial benefits, even though the university owns the IP (Wits Enterprise, 2012). Wits's IP Policy has historically permitted funding for Wits Enterprise to facilitate technology transfer and patenting; however the university needs to research the market and network with industry to operate in the broader ecosystem. University management does not yet have all necessary systems in place (Wits Enterprise, 2012).

The Wits portfolio of patenting doubled every year between 2003 and 2011 (Wits Enterprise, 2012), following the introduction of the Wits IP Policy in 2003 (Wits University, 2003). Prior to this Policy, which requires academics to disclose research that can be patent-protected, only a few small pockets of patent activity existed at Wits, in industrial diamond technology, gene-silencing technology for hepatitis B, and in bone generation. Today, the university's patent portfolio covers a relatively wide range of activity, including inventions in Health Sciences,
Engineering and the Built Environment, and Science. In the Faculty of Health Sciences, the Department of Pharmacy and Pharmacology in the School of Therapeutic Sciences had, by 2010, filed 25 patents in a single patent class in South Africa. The research involved drug delivery technologies to enhance the efficacy of drugs, with the focus on improved drug delivery of existing molecules (at low cost) as compared to the development of new molecules (with extended time to develop/market and high cost) (Wits University, 2010, pp. 103–5). The inventors were the most highly published in the field of pharmacy in South Africa, and were publishing approximately 15 journal articles annually.

Between 2010 and 2012, Wits established a dedicated Technology Transfer Unit to perform TTO functions within its IP management unit, Wits Enterprise. Wits Enterprise is a stand-alone company, established by the university in 2002, and offers a wide range of IP management research contracts and short courses.

The cost of patent filing at Wits is covered by a mix of public funding and funding from the university (for the legal fees, via Wits Enterprise). Prior to the Act, Wits made only limited financial commitments to technology transfer from the university, because it apparently did not see value in protecting inventions if there was no intention to exploit them commercially. In 2011, Wits introduced funding of IP protection for the first time, and increased its budget for this activity in 2012 (Wits Enterprise, 2012). Wits records patents through the RIMS (InfoEd) patent database, which includes a technology transfer module and a database for patent filings. The InfoEd system prompts the inventor or system administrator to either file a patent or take another specific action. NIPMO has access to the system data (Wits Enterprise, 2012).

Research-IP manager perspective

Wits research-IP managers explained that many industry funders have had to re-evaluate their approach since the introduction of the IPR-PFRD Act, because most industrial support had not, before the Act, been on a full-cost basis. Before the Act, industry-funded research projects generally had additional university or government funding, and IP from this research belonged to Wits, according to its IP Policy. The university would then negotiate the industry funder’s rights to the IP, e.g. rights to post-commercialisation reward. South African petrochemical parastatal Sasol is an example of a company that has restructured its approach since the promulgation of the Act. The company has, since the Act, developed a policy for university research funding that allows it to retain ownership of IP from research of high commercial value in return for paying full cost to the university (Wits Enterprise, 2012).
The view was expressed that most South African businesses do not fully understand IP. Since much IP comes from offshore, businesses know how to commercialise it but not how to manage it. Full-costing for industry research funding is seen as an essential way forward wherever possible, otherwise Wits owns the IP even where it may lack the capacity or the finance to develop such. Initially, there was a fear that the full-cost model would be a problem; as it turned out, key industry players were not fazed, but wanted to understand the risks and liabilities more explicitly (Wits Enterprise, 2012).

Wits Enterprise expresses the view that there have been limited developments at Wits regarding collaboration between the university, industry and government, i.e. “triple helix” collaborations. Examples cited of early-stage triple helix formation were the Technology and Human Resources Programme (THRIP) programme of the NRF and the Department of Trade and Industry (DTI), and the De Beers Element Six programme of funding for industrial diamond research. These, however, were funding approaches rather than cases of commercialisation of research output. It was apparently too early to gauge the degree to which the triple helix approach on the input side was resulting in triple helix in operation on the output side (Wits Enterprise, 2012).

Though Wits research-IP managers interviewed stated that converting IP to commercial products and services is becoming more active at Wits, traditional forms of academic achievement are still pre-eminent among the majority of Wits academics and, in the short period since the Act has taken effect, there has been very little impact on broader research practice at Wits. The majority of academics were in fact unlikely to be aware of the Act, though there were plans to raise awareness. Scientists in Engineering Science were said to be knowledgeable, while greater awareness of the Act was needed in Health Sciences (Wits Enterprise, 2012).

Meanwhile, in the realm of dissemination and publication, Wits in November 2012 signed the aforementioned Berlin Declaration on Open Access (which UCT signed a year earlier, in 2011). However, the interviews with Wits research-IP managers and a Wits researcher-inventor revealed that there is a degree of uncertainty at Wits regarding what should or should not be disclosed through OA publishing, and thus there is a need for greater clarity on the Wits approach to OA. The technology transfer process regulated by the Act does not prevent OA publishing. Because a regulator’s permission is required in the case of publication of potentially patentable information, this hurdle to publishing ensures that motivation to publish includes inventors’ consideration of their actions in terms of the best way to make the knowledge useful. This involves thinking through the issues, rather than simple regulatory compliance.
Since inventions can only be protected prior to publication, the university advises academics to attach draft conference papers or scholarly articles to their patent applications. Academics can then publish the paper or article once the provisional patent is filed and a priority date is given (Wits Enterprise, 2012).

The view was expressed that the requirements of the legislation have fostered a conversation about commercialisation and innovation at Wits – a conversation that would not have been possible prior to the Act of 2008 (Wits Enterprise, 2012). Wits is now beginning to build the commercialisation component of its innovation system, with Wits Enterprise emphasising that the IP protection strategy of the university must be linked to an ability to deploy IP in the market. Spending money on patenting commercially unviable inventions is pointless, because the roughly ZAR1 million required to file a single full international patent family application is a large financial commitment for an organisation with a research budget of under ZAR500 million. It is possible that the rate of patenting will decline as understanding of the commercial prospects of academic research grows (Wits Enterprise, 2012).

In working to build the resource base for commercialisation, both the research-IP managers and the researcher-inventor interviewed said they felt that there is a need for appropriately skilled technology transfer professionals. Such professionals are scarce, however, with some estimates suggesting there may be as few as 20 such experts in the country (Wits researcher-inventor interviewee, 2012). Because NIPMO, the TIA, the universities and the legal profession all need such expertise, this personnel shortage presents a major system constraint. It is therefore necessary to identify and train professionals to fill the gap in this field. Furthermore, effective access to information tools and databases that allow analysis of the industry and market (to support potential partnerships) is also needed (Wits researcher-inventor interviewee, 2012).

To commercialise technology, a university can either license its IP to existing parties or create a company to use the IP. Wits currently licenses IP generated at the university to firms that have the capacity for, and interest in, commercialising it. This is because much of the patentable IP produced by researchers at the university is very early-stage and requires a fair amount of development before it is market-ready. It would be very risky for the university to establish start-up companies, as this would require venture capital, entrepreneurial management and possible incubation centres or specialised laboratories. These necessary elements are not within the natural scope of university competency. Wits attempted the alternative avenue for commercialising IP by establishing two start-up firms. Both, however, were in the process of being closed in 2012 because they had proved to be too risky (Wits Enterprise, 2012).
Where highly specialised clinical trials are required, neither Wits nor local companies have access to the large financial investments necessary. In fact, access to venture capital in South Africa, on the whole, is limited by the country’s relatively undeveloped venture capital sector. Local venture capital has historically failed to engage with very-early-stage high-tech start-ups. While institutions such as South Africa’s Industrial Development Corporation (IDC) could potentially have some interest, the applicable university-based research is typically too early-stage to meet the criteria for IDC development financing (Wits researcher-inventor interviewee, 2012).

An important challenge and priority is funding of TTO functions at Wits Enterprise. More funding is needed from the university and NIPMO. For example, in one of the most advanced cases (as mentioned above) of invention and patenting at Wits, academics and research students in the School of Therapeutic Sciences are working on enhanced drug delivery technologies, potentially making an important contribution to knowledge. Now, argues Wits Enterprise, “the university needs to assist in getting the most impact out of that science” (Wits Enterprise, 2012). This case suggests strong opportunity in the future for entrepreneurial science at Wits, facilitated by Wits Enterprise.

Researcher-inventor perspective

The researcher-inventor interviewed, working in the commercially oriented space, explained that the research team prioritises publishing academically. However, since inventions can only be protected prior to publication, the researcher-inventor pointed to a potential conflict between academic publishing and the exploitation of their knowledge through commercial channels. Some research team members would prefer to delegate the commercialisation aspect of their patents to Wits Enterprise, but are limited by the difficulties involved in commercialising early-stage research (Wits researcher-inventor interviewee, 2012). It was stated that global patenting is an important issue for certain research fields. By way of example, South Africa has no local pharmaceutical development industry so inventors can effectively only transmit their research for commercialisation in global R&D markets. Thus, with respect to the invention and patenting phase, local inventors in the pharmacy sector may benefit from global linkages and global clout. The Wits pharmaceutical research team had filed a provisional patent application locally first and then filed an international Patent Cooperation Treaty (PCT) application. However, the degree of protection that a local patent gives, in a context where no local R&D industry exists, is an important question that needs to be addressed (Wits researcher-inventor interviewee, 2012), as this could amount to an inefficient utilisation of scarce funds.
The investment of public funds in research is understood to place an obligation on researcher-inventors to ensure returns are realised in the local economy, while at the same time facilitating a competitive innovation sector. One of the most effective means of moving the research and commercialisation agenda forward in South Africa is seen to be through the global patenting market. At Wits, an advanced drug delivery platform is being developed for a disease that affects everyone globally, making the securing of patents in the US, EU and Japan (the major pharmaceutical markets) essential. In this context, Wits inventors are engaged in a global value creation process, while aiming to generate a revenue stream back to South Africa. South African scientists can have a global agenda, participating in global R&D markets in order to enhance competitiveness. It can be argued that a local patent has limited value if it pertains to a global disease where R&D occurs abroad (e.g. ulcerative colitis, cancer), while a local patent for HIV drug delivery has significant value. Both approaches can deliver positive macro-economic effects. Publication occurs after receiving the priority date in the case of a provisional patent application in South Africa (Wits researcher-inventor interviewee, 2012).

It was noted that knowledge gained through pharmaceutical R&D contributes to knowledge socialisation through the scholarly publishing and citation process. Inventors within the field of pharmaceutical research at Wits publish between 15 and 20 papers a year in high-impact international journals. The researcher-inventors publish in both paid-access (per article or via subscription) journals and via OA modes. OA scholarly publishing has been observed to increase citations, as more academics have access to the articles. Global researchers have approached the pharmaceutical research team for access to their findings, and OA simplifies the process for academics who cannot afford access to paid-access publications, while data related to patent filings that have commercial potential is not shared (Wits researcher-inventor interviewee, 2012).

It was argued that researchers who want visibility “to make ourselves known” value OA, as it has many benefits. OA publishing is observed to help validate the research, as international researchers find it valuable and cite it. For example, Wits research papers on advanced drug delivery platforms are extensively cited and high visibility has led to many expressions of interest in collaboration from researchers in, for example, Egypt, Argentina and Mauritius. Additionally, citations are among the criteria used for promotion, e.g. through reporting H-Index values. High citation rates suggest the article has created attention, something that is wanted in the innovation space. The objective is to create attention for the inventors, the institution and the country. Given the importance of OA in facilitating basic research, the view was expressed that the focus of the Act should not be solely on commercialisation (Wits researcher-inventor interviewee, 2012).
The Wits researcher-inventor interviewee's perspective includes the view that, in particular research fields, the officials scrutinising the patents should be experts. It was noted that the patent examination process in South Africa is not as stringent as it could be and that greater capacity is required at the patent office. However, researchers filing for patent protection are usually the local experts, and thus cannot also be active in a patent examination office. This raises questions regarding the exact nature of expertise needed at the point of patent scrutiny and where such expertise might come from. NIPMO and the Companies and Intellectual Property Commission (CIPC, formerly CIPRO) may need to engage in global and local collaborations for effective patent scrutiny. In this regard too, however, there is a risk of bias that would need to be managed (Wits researcher-inventor interviewee, 2012).

Ambiguities in the Act and Regulations

Since 2008, when the Act became law, the process of setting up the complementary Regulations, as well as the Act's implementing infrastructure, has remained gradual, and at the time of this study had yet to be completed. There is a sense of ambiguity and uncertainty regarding the Act's practical application, warranting the feeling that the Act needs redrafting (Wits Enterprise, 2012). While amendments to many of the ambiguous aspects of the Act were proposed by universities and other advocates prior to enactment, the amendments were not adopted. Furthermore, certain sections in the Regulations are inconsistent with the provisions of the Act. However, thus far, despite being “left with the chaos”, as one respondent put it, Wits appears to have taken a goodwill approach to meeting the objectives of the Act through pragmatic adaptations and general commitment to make the Act work. In order to clarify areas of uncertainty in the Act and Regulations, the regulator has published guidelines. Practice notes, similar to those deployed on tax matters by the South African Revenue Service, have been proposed as another tool for NIPMO to use, but it is not yet known whether this approach will be introduced (Wits Enterprise, 2012).

A primary issue appears to be the matter of what falls within the scope of the Act, because the Act does not define R&D, referring only to IP emanating from publicly financed research. Regulatory guidelines are in the process of development, and South African universities have had some input into the guidelines, on a confidential basis. It is unclear whether the draft guidelines will be published for comment. (The regulator NIPMO is also focusing on getting its systems operational to guide the TTOs, but is under-resourced (Wits Enterprise, 2012).)
5. Conclusions

The evidence outlined in the previous two sections of this chapter – the legislative and regulatory analysis in Section 3 and the UCT and Wits case study findings in Section 4 – suggest that the research landscape for the two universities studied (and potentially for other South African research universities and public research entities) is experiencing a period of transition. The transition would seem to be from a more purely research orientation to more mixed research and innovation orientation.

The IPR-PFRD Act of 2008 is a primarily a patent act, not an omnibus piece of legislation for publicly funded innovation. The Act is therefore part of an innovation puzzle, in which the roles and contributions of various actors (DHET, the DST, ASSAf, universities and industry) are shifting from the historically more linear contributions to research towards a form of research–innovation interconnectedness or entanglement, to use the terminology of Hanauske et al., (2007). The DST’s initiative, via the Act, to promote and regulate the patenting of publicly funded research seems clearly to be prompting behaviour. At the same time, global trends in publishing are raising philosophical and ecosystem questions in South Africa about how to maximise the value of academic publication output – as evidenced by the aforementioned change of approach at ASSAf (with the support of the DST and DHET), and the adoption by Wits of the Berlin Declaration. Both the patenting and scholarly publishing environments in South Africa are thus in a state of flux.

While the evidence gathered by this research project suggests that there may have been an initial chilling effect on scholarly publishing following introduction of the Act in 2008, as well as a rearranging of industry finance for university research and increased emphasis on university-level IP policy and practice, it would appear that significant amounts of successful adaptation have occurred. The provisions of the Act and Regulations require, and appear to have prompted, investments in increased IP management capacity at state level and at the two universities studied. Further system-building and legal-regulatory mechanisms are likely still required, in order for the DST, TIA, NIPMO, universities and industry to create, and adapt to, the new rules of the game. There is also evidence that the scholarly publishing landscape is beginning to shift, based on new thinking about academic journal accreditation, OA publishing and financial incentives for scholarly publishing. The whole system of knowledge production is in motion. At the same time, the human and financial infrastructure to support patenting of university-based R&D is slowly unfurling. This system change has the potential to reset the “publish or perish” approach to a mixed “patent, publish, commercialise” and “publish and socialise” approach.
In conclusion, we now consider two particularly important themes that have emerged from this research:

Building the new ecosystem

The following are levers for building the new ecosystem for publicly funded research:

- from government: policy, legislation, regulations, supporting institutions (NIPMO, TIA) and funding frameworks;
- from universities and other publicly funded research entities: IP policy, externally funded work policy, TTOs and legal offices; and
- from industry: research funding approaches.

These levers are all necessary, and must be interlinked, in order for the knowledge capacity and base of publicly funded research entities to be aggregated and extended. For instance, legislation and regulations alone can only have limited impact on the challenge posed by the fact that South African university research tends to be underutilised at this stage in the country’s knowledge production evolution, because most potentially commercialisable research is early-stage. In addition to the fact that the Act and Regulations only deal with a tiny slice of the research and innovation pipeline, we saw above that even on the matters specifically addressed by these legal instruments, the instruments are vague on important points, including the distinction between economic and social value and modes of support for key activities in the value chain of transformation of IP into both economic and social value.

Only an interlinked ecosystem, with the levers of government, public research entities and industry combining effectively, can improve utilisation of early-stage research and help bring it to later stages in a manner that can deliver on both commercial and social objectives. The components of South Africa’s new ecosystem for publicly funded research are still at an early stage of development, with supporting institutions at state level and at public research entities (NIPMO, TIA, TTOs) still in their formative stages. The role of NIPMO is protection- and support-related; the role of the TIA is support-related; and the synergistic linkages between these two bodies, TTOs and public research entities are still in an early stage of evolution.

There is also the matter of how to give both patenting and scholarly publishing the attention they require for their combined future development. Attention to one without attention to the other limits the potential of the IP landscape as a whole. The Act’s focus on patenting, and lack of emphasis on scholarly publishing, may be perceived as a weakness. This is because the production, commercialisation, dissemination and socialisation of knowledge are all related endeavours.
As such, some argue that legislation must treat them as related processes, on the grounds that if the legal-regulatory system does not address all elements of knowledge production in the IP ecosystem, systemic weaknesses will result, with every element of the ecosystem undermined. It can thus be argued that the IPR-PFRD Act should also have included proactive provisions on scholarly publishing. Such an argument is not persuasive, however, because scholarly publishing cannot and should not be driven by legislative requirements, so as to maintain the sanctity of university autonomy and the academic freedom of researchers and scholars. This research study has shown that there are non-legislative mechanisms which can, and are being, harnessed to build a scholarly publishing environment conducive to the new ecosystem.

Knowledge socialisation

The Act conceptualises commercialisation broadly, and potentially applies a commercialisation imperative to knowledge that should, in our view, be prioritised for socialisation. This over-broad conception of commercialisation requires forethought by universities and inventors at universities, so that knowledge production is not collapsed into a requirement that all knowledge be subject to patent applications by default.

Socialising knowledge is important because it forms the foundation of knowledge-building for future generations of researchers, inventors and universities. Whether published using paid-access journals or OA platforms, scholarly research is a specific form of knowledge socialisation. In the interests of socialising knowledge, UCT and Wits have both confirmed their institutions’ commitment to OA by becoming signatories to the Berlin Declaration.

The Act, and the actors interviewed at UCT and Wits for this research, envision achievement of broad societal and economic impact through publicly funded research. Differences emerge, however, with respect to the means through which to foster such impact, with arguments ranging from calls to protect IP to calls for it to be made openly available. It is important to distinguish between two main kinds of potential impact: commercial and social. A university is, above all, a social institution of knowledge generation, with a broad societal role, not merely a narrow economic, commercial, instrumentalist one. We have seen that the emerging South African innovation landscape addresses patenting, licensing, commercialisation and scholarly publishing (in either paid-access or OA format), but narratives aligned with notions of open science, open research, open knowledge and “open development” (see Chapter 1 of this volume) are not prominent in the South African innovation and IP discourse, and they ought to be.
Finally, it is necessary to return to the research question for this study, as provided in the opening section of this chapter: *How does South Africa’s 2008 IP commercialisation law potentially impact research, innovation and scholarly publishing in key fields at universities?* The research has found that the Act appears to have the potential to steer university research, innovation and scholarly publishing in new directions. However, it seems clear that if South African universities approach the Act simply from a compliance perspective, the R&D objectives of the Act could be lost. A compliance-based approach could lead to indiscriminate patenting, without consideration to real potential commercial and social benefits and costs. Such an approach would not achieve the developmental intentions of the Act, as it would not sufficiently engage universities and their inventors in the task of considering how best to transfer knowledge generated by public funds to industry and to society. A compliance-based approach would represent a lack of the philosophical questioning and iteration necessary for constructing a 21st-century knowledge and innovation ecosystem in South Africa.

Bibliography

Primary sources

Legislation, regulations

International:

South Africa:
Broad-Based Black Economic Empowerment (B-BBEE) Act 53 of 2003.
Copyright Act 98 of 1978.
Patents Act 57 of 1978.
Policies

National Research and Development Strategy (2002), Department of Science and Technology (DST), Pretoria (DST, 2002).

UCT

University of Cape Town (UCT) (2008), “Comments on IPR from Publicly Financed Research and Development Bill”.
University of Cape Town (UCT) (2010), Innovation at UCT 2010.
University of Cape Town (UCT) (2011a), Innovation at UCT 2011.

Wits University

Wits Commercial Enterprise (Pty) Ltd. (Wits Enterprise) (2012), data from interviews and unpublished documents obtained by the authors from Wits Enterprise, Johannesburg.
Wits University (2003), Intellectual Property Policy.

Secondary sources

J. (Eds), *Knowledge Management: Theoretical Foundations*, Informing Science Press, Santa Rosa, CA.

Index

Please note: Page numbers in italics refer to figures, tables and appendices.

A

Academy of Sciences of South Africa (ASSAf) 289, 308
access and benefit-sharing (ABS) 15–16, 18, 151
Nagoya Protocol 153, 161–162
Regulations, South Africa 162
access to knowledge (A2K) 3, 17, 204, 285–286
Access to Knowledge for Development Center (A2K4D) 178
Adama University Research Policy, Ethiopia 325
Addis Ababa University (AAU) 323
Research Policy 325
Africa 4–5, 61
agricultural production 89
diversity of social constructs 377
net exporters of knowledge 18
recommendations to policy-makers 391–393
unemployment statistics 46
African Economic Research Consortium (AERC) 210
African Growth and Opportunity Act (AGOA) 114
African innovation and creativity
undermining 5, 7–8
undervaluing 5–7
African innovation policy priorities 20
African national patent regimes 242
African Science, Technology and Innovation Indicators (ASTII) 39
African Innovation Outlook report 39
African Technology Policy Studies Network (ATPS) 210
African Union (AU) 344
African workforce 46
agricultural biotechnology 88
agricultural industries 133
agricultural producers 79
agricultural products 375
agricultural waste 272, 273
rice straw 273
Agro Eco-Louis Bolk Institute 88
Ajuda de Desenvolvimento de Povo para Pova (ADPP), People to People Development Aid, Mozambique 257
community biofuel project 256, 257, 258–259
NGO project 260
algae 272, 273
alternative art scene, Cairene 178–179
alternative markets for higher-value products 78
alternative music and art industries 179
alternative music-consuming populations 179
alternative publishing models
online subscription 204–205, 212
online OA self-archiving 205, 212
alternative trading organisations (ATOs) 86
alternative value chain 90–91
American University in Cairo, The (AUC) 178
Anne Nang’unda Kakuli v Mary A Ogola & Another, Kenya, 215–216
anti-commons effect 337
Anti-Counterfeit Act, Kenya 140
Antique coffee, Guatemala 97
apprenticeship
as means of learning 66–67
sector-specific 376
Aquaculture Research Centre (ARC), Egypt 273
Arab Academy for Science, Technology and Maritime Transport 273
Arabic Creative Commons licences 175
architecture for Kenyan scholarship
copyright communities 210
libraries and archives 209
professional research and publishing 210
publishers 209
scholarly consortia 210
universities 209
Argentina 306
artisans 67
and technology students 69
Association for Promoting Fairtrade in Finland 86
Australian patent office (IP Australia) 275–276
authorship 206–208
motivation for 219–221
and open scholarship 220–221
automobile parts 375
B

Bali meeting, UNFCCC 268
Banjul Protocol on Marks within the Framework of ARIPO 340
Bank of Industry (BoI), Nigeria, 116, 125
international emulation 320–321
B-BBEE Act, South Africa 293
Berlin Declaration on Open Access 298, 303, 308, 310
Berne Convention for the Protection of Literary and Artistic Works 214, 340
bio-cultural community protocols (BCPs) 153, 378, 388
Biodiversity Act, South Africa 159, 162
biofuels 15, 375
agricultural products 248
ethanol and biodiesel 248–249
exploitation 250
innovations 270, 383, 385
legislation 254
patent landscape, Mozambique 255–256
policy and strategy, Mozambique 249
production methods 273
technology in production 258, 382
technology patenting 20
biopiracy 152–153
bio-prospecting 162
biotechnology 11
Botswana 385
benefits of public research to economy and society 359, 362
framework for IP at institutions 348–353
importance of IP factors to commercialisation 360
industrial property rights 341
institutional funding for research 365, 365
institutional IP environments 364
institutional IP policies 364
institutional IP policy on commercialisation 352, 352–353
institutional IP policy on dissemination 350
institutional IP policy on knowledge utilisation 351
institutional roles 362–363, 363
IPA and PRO ownership of results 350
IP and research practices necessary for value 361
IP and STI environment 340–342
IP and University of Botswana (UB) 342–343
IP expertise and activity 344–345
IP law and policy 338, 353, 354–355
IP management infrastructure 363
IP methods used 359
IP for protection of research output 345–346, 347
knowledge of how to use IP 347
knowledge of institutional IP policies 349, 353
levels of research activity 356–357
ministerial powers and parastatal institutions 343–344
Ministry of Trade and Industry 339, 343
publicly funded researchers 22, 335, 359, 384, 387
public policy 22
Registrar of Companies 344–345
research factors and commercialisation 358
“triple helix” of research and development 344
types of research 353, 356
university and PRO roles 366
use of IP procedures 348, 358
Botswana domestic laws and regulations
Copyright and Neighbouring Rights Act 341
Industrial Property Act (IPA) 341
Industrial Property Regulations, Statutory Instrument 341
Botswana Export Development and Investment Authority 343
Botswana Football Association and Another v. Kgamane 345
Botswana Innovation Hub (BIH) 343, 344
Botswana Technology Centre (BOTEC) 343
Braille, audio or digital texts 225
branding 110
communal strategies 379
BRICS nations (Brazil, Russia, India, China, South Africa) 38
Budapest Open Access Initiative 211
Bushbuckridge, Kruger to Canyons (K2C) area, South Africa 151–168, 380
multi-ethnic nature of TK commons 160
municipality 157
registered as Biosphere Reserve 151
traditional medicinal practitioners 18, 386
C
Canadian Intellectual Property Office (CIPO) 276
capitalist entrepreneurs 36
centre for Research in Transportation Technologies (CRTT), Makerere University, Uganda 64–65
certification
assessing schemes 88–90
critics of schemes 89
overseen by governmental bodies 88
marks 16–17, 78, 111, 112–113, 120, 123, 124
registration of marks 117
trademarks schemes 379
China 97, 110, 111, 122
clean energy technology 378, 383
Egypt 242, 267
fast-track administrative procedure 275–276
innovations 270, 385
and IP mechanisms 268
Mozambique 242
Climate Change Conference, UN, Copenhagen 268
clothing 375
Codes of Practice for Organic Farming, Ghana 88
collaborative, openness-oriented dynamics 4
collaborative branding, trademarks and geographical indications (GIs) 16–17
collaborative innovation and creativity 9–12, 22, 135, 388

collaborative intellectual property 377–384

collaborative partnerships 144–145

collective entities 81

collective management organisations (CMOs) 210

collective marks 111, 123, 124

“CA” mark 112

collective rights of a community 80

College of Engineering, Design, Art and Technology (CEDAT), Makerere University 16, 63, 387

IP dynamics 71–72

Kiira EV Project 64–65, 67, 72

Makerere Clusters Programme 73

MoUs (memoranda of understanding) 72

networks among study participants and entities 74

research centre and informal-sector artisans 59–60

see also Gatsby Garage automotive workshop

commercialisation 320, 335

in global R&D markets 305

of IP 285, 286, 304

of research output 348

Commission on Intellectual Property Rights (CIPR), UK 319–320

common law

of copyright 214

jurisdictions of UK and former British colonies 78

communes 137

concept 154–155

knowledge 137

material 137

social 137

traditional agricultural 388–389

communism 112

communal trademarks 109, 111–113, 120, 123, 379

Ethiopian initiative 111

feasibility 114

models 124

Nigeria 116–119

communication 37

communities

closed group of 81

traditional agricultural 82

Companies and Intellectual Property Commission (CIPC) (formerly CIPRO), South Africa 307

confidential information 379

construction, innovation in 38

consultancies for industry 353

consumer preferences 96

Convention on Biological Diversity (CBD)

138–139, 153, 271

cooking oil 272, 273–274

copyright 1, 3, 10, 132, 138, 346, 378

American law 214–215

development in Kenya and Africa 213–214

economic rights 208

and empowered creativity 19

infringement 221

laws, policies, practices 224

moral rights 207, 208

paternity right 207

policy-makers 205

protection 175, 205, 389

in research 14

right of integrity 207

term in Kenyan law 207

violations 175

see also open scholarship and copyright, Kenya

Copyright Act, Kenya 140, 141

Copyright Tribunal, Kenya 210

cosmetic industries, and traditional knowledge (TK) 133

counterfeiting and falsification 97, 124

Creative Commons 11, 175

Creative Research Systems, Sample Size Calculator 339

creativity 1–2, 10, 133, 374, 375

cultural heritage 378

customary laws 157–158, 159

D

De Beers Element Six programme 303

demand-side factors 47

Department for International Development (DFID), UK 94

Department of Chemical Engineering, UCT 296

Department of Education, Science and Training (DEST), Australia 287

Department of Higher Education and Training (DHET), South Africa 289, 308

Green Paper for Post-School Education and Training 289

Department of Molecular and Cell Biology, UCT 286

Department of Science and Technology (DST), South Africa 288, 308

Department of Trade and Industry (DTI), South Africa 303

design theft 121

diffusion

geographic versions of theory 37

process of innovation 41–42

digital commons business model 171, 387

advertising and/or sponsorships 181

knowledge of 181

Meetphool digital platform181–182

online digital music and streaming 184

digital copyright exchange 286

digital communications 203

digital rights management (DRM) 219, 223

digitisation and copyright, Kenya 210–211

discontinuous economic change 37
Innovation & Intellectual Property

Divine Chocolate Inc, UK 86
domain name system (DNS) 210
Draft Bill on Protection of Traditional Knowledge and Traditional Cultural Expressions (Draft TK Bill), Kenya 141–142
dual economy model 48

e
Econergy International Corporation 249, 252–253
ecological and sustainability conditions, of production 87
Economic Community of West African States (ECOWAS) 125
economic development 36
drive to maturity 36
Economic Development Imports 86
economic growth 33
economic strategies 38
economic systems
classic and neoclassical 33–34
development 33, 35
dynamic development 34
formal and informal 9
Eco-Patent Commons 276–277
ecosystem, building the new 309–310
"egocentric networks" approach 63
selection of central node 63–64
Education and Training Policy, Ethiopia 322

Egypt 306, 385
Al Sawy Cultural Wheel 179
willingness to pay musicians 183
biofuel patenting 20, 271–272, 275–278
biofuel technology development 382
copyright law 174–175, 381
Economic Court 194
"Hollywood of the East" 171
illegally copied CDs and cassettes 183–184
independent music industry 19, 171–172, 376, 380–381, 387
IP law in practice 175–177
alternative art outlets, Cairo 197
Patent Gazette 272
patent law 270
Patent Office 270–271, 272, 275, 276
patent system 267–272
private sector 274–275
public sector 274
research incentives 277
stakeholders 272–275, 277–278
see also music industry
Egyptian alternative music scene 390
judicial process and court system 180, 181
knowledge of copyright law 179–180
relevance of copyright 180
Egyptian copyright provisions 268–271
administrative bodies 194
conditions of protection 192
duration of protection 193
economic rights 192–193
Executive Regulation 270–271
moral rights 192–193
Egyptian Environmental Affairs Agency (EEAA) 274
Egyptian Intellectual Property Rights Law (EIPRL) 174–175, 182–183, 268–269
Executive Regulation 271
moral rights 190
electronic patent databases 14
electronic publishing 204
engineering, software and genetic 203
Engineering Capacity Building Program (ECBP), Ethiopia 324
enterprises, parastatal and industrial 336
entrepreneurial education 47
entrepreneurial environment in a developing economy 42–45
entrepreneurs
"imitating" 41, 42
"innovating" 41
risk-taking 39
entrepreneurship 9, 32
and Africa 45–48
defined 40
in developing world 40–42
imitation 52
and IP 43–44
environmental certifications 78, 87
and labelling 84
Environmental Protection Authority (EPA), Ethiopia 91
environmental standards 110
environmentally sound technologies (ESTs) 276
ethanol 249
Ethiopia 21–22, 99, 316, 373, 375, 384, 385
agriculture and GDP 316
coffee industry 17, 77, 78, 84–85, 90–91, 376, 379, 386
Coffee Quality Control and Inspection Centre 83
Coffee Quality Control and Marketing Proclamation 92
coffee trademark and licensing initiative 98–99
Draft GIs Proclamation 91
empirical value chain 82
Farmers Cooperative Unions 84, 388
foreign exchange earnings 83
Forest Stewardship Council 87
government policies 321–323
institutional IP management 324–326
IP rights and university research 319–321
Ministry of Trade 91
national IP system 324–326
Office of the Vice-President 325
Organic Agriculture System Proclamation 88
policy-makers, industry managers, academic researchers 326–328
poverty eradication 316–317
public researchers 387
Rainforest Alliance 87
university research and innovation by firms 323–324, 329
UTZ KAPEH 87
Ethiopia Commodity Exchange (ECX) 84
quality inspection centres 92
Ethiopian Intellectual Property Office (EIPO) 83, 91, 324–325, 327
trademark-based protection 98–99
Europe 99
European Patent Office 275
Eurostat (Statistical Office of the European Communities) 9, 32
evolutionary economic theory 37–38
Expert Group on Informal Sector Statistics (Delhi Group) 49

F
fair trade 84
certification 86–87, 89–90
labelling 78
Fairtrade Federation 86, 90
Fairtrade Foundation, UK 87
Fairtrade Labelling Organizations International (FLO) 86
FAIRTRADE™ mark 86
Fair World Designs 86
financial support facilities and schemes 125
FLO-Cert 86
Kafa Forest Coffee Farmers Cooperative Union 86
Oromia Coffee Farmers Cooperative Union 86
Sidama Coffee Farmers Cooperative Union 86, 89, 93
Yirgacheffe Coffee Farmers Cooperative Union 86, 93
folklore 133, 136, 214
foreign certifiers 88
foreign direct investment (FDI) 344
foreign markets 113
formal and informal sectors
dualistic conceptions 60–61
innovative work 66
networks, linkages between 67–69
sharing of innovations 70–71
formal–informal continuum 61–62, 387
choosing a point on 62
knowledge transfer 61
formal–informal exchanges and linkages 69–70
formal–informal innovation intersections 11
France 99
free and open source software (FOSS) movement 11
Free Primary Education (FPE), Kenya 209
Friendship, Commerce and Navigation (FCN) Agreements 214
G
Galp Energia 252
Gatsby Garage automotive workshop, Uganda 16, 387, 388
IP protection issues 65–66
research 62–69
General Administration for the Prevention of Infringement of Intellectual Property Rights, Egypt 194
genetically modified (GM) foods 88
genetic resources (GRs) 79
geographical indications (GIs) 13, 16, 17, 77–78, 80–82, 89, 111, 113, 118, 123, 124, 138, 341, 346, 378
compliance and additional production costs 94
feasibility 90–91
legislation 92–93
operational challenges 95
origin-designated (or place-based) branding 379
potential economic benefits and costs 94
protection for wines and spirits 98
structural challenges 91–95
Ghana 48, 373
adinkra and kente cloths 97
certification schemes 85
Cocoa Abrabopa Association 87, 93
cocoa industry 17, 77, 78, 90–91, 376, 379, 386
empirical value chain analysis 82
Geographical Indications Act 91
good agricultural practice guidelines 92
government role in production and marketing 85
Kuapa Kokoo Farmers Union 86–87
Licensed Buying Companies (LBCs) 85, 388
Ministry of Agriculture 92
Ministry of Trade 83
Rainforest Alliance 87
Registrar General’s Department 83
Standards Authority 83
Standards Board Codes of Practice for Organic Farming 88
UTZ KAPEH 87
Ghana Cocoa Board (COCOBOD) 85, 94
Quality Control Division 93
global diseases 306
Global Entrepreneurship Monitor (GEM) Model 43
and IP 44–45
globalisation 109, 111
global patenting market 306
greenhouse gas emissions 267
green inventions 275
green technologies 268, 276
gross domestic product (GDP)
 Botswana 344
 Ethiopia 316
 Nigeria 110
 gross expenditure on research and
development (GERD) 344
Group of 77 developing nations (G77) 268
H
 Hagen, Everett 36
 Hague Agreement Concerning the International
 Deposit of Industrial Designs 340
 Hague Convention on the Law applicable to Trusts
 and their Recognition 163
 Haramaya University, Ethiopia 323
 Harare Protocol on Patents and Industrial Designs
 within the Framework of ARIPO 255, 340–341
 Hargreaves Report, UK 285–286
 Harrod-Domar Growth Model 35
 healing schools (imphande) 157
 Higher Education Proclamation, Ethiopia 322, 325
 Hirschman, Albert 35
 HIV infection 152
 local patent for drug delivery 306
 Hoselitz, Bert 36
human development 33
I
 IBM 276–277
 implementation, meaning of 10
 inclusive development 8–9
 India 118
 Council of Scientific and Industrial
 Research (CSIR) 134
 Darjeeling tea 111
 Protection and Utilisation of Publicly
 Funded Intellectual Property 321
 leather products, toys, wall decorations 111
 pashmina textiles 111
 indigenous and local communities (ILCs) 18, 80,
 81, 144, 145, 146, 378–379
 control over commercialisation and
 exploitation 134
 control over natural resources and TK 153
 Kenya 132, 133, 136–137
 Kukula Healers, South Africa 161–162
 and TK 17, 80
 indigenous art 123
 indigenous knowledge and capabilities 38
 Indigenous Knowledge Systems Policy,
 South Africa 159
 indigenous people’s innovation 3
 indigenous scientific capabilities 38
 indigenous textile products, Nigeria 113
 industrial absorptive capacity for knowledge
 conversion 375
 industrial designs 138, 346
 Industrial Development Corporation (IDC),
 South Africa 305
 industrialisation 36
 Industrial Property Act (IPA), Botswana 341
 Industrial Property Act, Kenya 140, 141
 Industrial Property Code, Mozambique 255, 382
 Industrial Property Institute (IPI),
 Mozambique 250–251, 256
 industrial property rights 255
 informal appropriation, research on 13
 informal economy (IE) 16, 32, 47–48, 52,
 61, 379
 “informal sector” concept 48–50
 informal protections 378
 international statistical definition 49
 Kampala auto mechanics 373
 networks, linkages in 69–70
 information and communication
 technology (ICT) 204
 efforts to digitally document TK 134, 136
 systems 14, 51, 80
 use of in Kenya 144–45
 “informalization” 203
 innovation 1–2, 10, 33, 67, 133, 283, 288, 304,
 339, 374, 375
 conceptual frameworks 32
 current state of literature 38–39
 development and diffusion 37
 and entrepreneurship 36, 52
 five-step theory (Rogers) 36
 in industrial enterprises 328
 knowledge transfer approach 38
 measurement in the informal sector 50–51
 systems approach 33, 38
 innovation–development nexus 33
 innovation for development 47
 innovative knowledge systems 376
 Institute of Chartered Public Secretaries of
 Kenya (ICPSK) 210
 Institute of Infectious Disease and Molecular
 Medicine (IIDMM), UCT 296
 Institut national des appellations d’origine (INAO),
 France 98
 instructional broadcasts 216
 intangible resources 14
 integrated seawater agriculture system (ISAS),
 Egypt 274
 intellectual property (IP) 32, 77, 111, 248, 249,
 268, 335, 373
 Code, Mozambique 255
 commercialisation 384
 conventional rights 79
 and dissemination 319–320
 education and training of lawyers in Africa 238
 fear of exploitation and infringement 52
 framework for development 51–52
 law and traditional healing 158–159
law, policy and practice 7, 10, 384
macro-level public policies 11
management, innovation, creativity 386
micro-level management practices 11
open or closed systems 283
policy instruments 133, 309
protection 319, 327, 346
rights 1–8, 22, 138, 317
rights in Africa’s informal sector 59
South African public funding 283
training of legal counsel and judges 241
valorising (adding value to) GRs
(genetic resources) 79
Western model of rights 79
Intellectual Property Rights from Publicly
Financed Research and Development
(IPR-PFRD) Act, South Africa 282–285,
288, 290, 302, 308, 310, 338, 383,
389–391
benefit-sharing 295
conditions that apply only to exclusive
licenses 294
conditions that apply to all licences 294
conditions that apply to offshore
transactions 294
evolution of South African approach 289
Framework, 288
institutional infrastructure 292
IP ownership and statutory protection 292–293
IP transactions 293–294
key provisions 291–292
primary intent of Act 290–291
Regulations 282–285
state “walk-in” rights 294–295
inter-ethnic traditions and customary laws 160
Inter-Ministerial Committee on Biofuels,
Mozambique 254
regulations for biofuel additives to
commercialised fuel 254
International Commission of Jurists (ICJ),
Kenya Section 210
International Conference of Labour Statisticians
(ICLS) 49
International Development Research
Centre (IDRC), Canada 50
International Federation of Organic Agriculture
Movements 88
International Institute for Environment and
Development (IIED) 158
International Intellectual Property
Alliance (IIPA) 176
International Labour Organisation (ILO)
45, 48–49, 51, 61
international markets
competition and standards 114
promotional activities in 95
International Patent Classification (IPC)
committee of experts 276
Green Inventory 276
International Organisation for
Standardisation (ISO) 110
International Trade Centre (ITC) 343
International Treaty on Plant Genetic Resources
for Food and Agriculture (International
Seed Treaty) 139
inventions 304, 381
evaluation of merits 20
protection and processes 359
inventors 303
investment 35
Italian Embassy, Maputo 252
Italy 110
J
Japan
policy-makers 320
productivity 36
Joint Integrated Technical Assistance
Programme (JITAP) 343
jojoba 274–275
medicinal applications 275
plantations 272
K
Kenya 380
alternative publishing 381
Anti-Corruption and Economic
Crimes Act 218
civil society organisations 213
collaboration between government
and indigenous and local
communities (ILCs) 132
collective management organisations
(CMOs) 213
conceptualising and contextualising
copyright 206–208
Constitution 132, 140, 204, 214
Copyright Act 206, 211, 213, 214–217, 219,
224–226, 381
copyright law 380
Department of Culture 136
Department of Justice 136
Digitising Traditional Culture Initiative 145
Draft TK Bill 132, 146–147
fair dealing 214–215
funding 143
industrial property law 380
international and regional legal
instruments 138–140
IP laws 132
IP rights 214
legal instruments for protection of IP
140–141
legal/policy framework and role of
government 142–144

401
local economy 49
McMillan Memorial Library Act 209
National Cultural Agency 142
national and legal policy framework 140–142
National Museums of Kenya 136, 143–144
National TK Policy 18, 132, 142, 144, 146–147, 380
Office of the Attorney-General 136
Official Secrets Act 218
Penal Code 218
Public Officer Ethics Act 218
scholarly authors 376, 387, 388
Science and Technology Act 209
stakeholder perspectives 142–145
State Law Office 213, 225
TK commons 380
TK digital library 380
University of Nairobi 136
Vision 2030, policy blueprint 204
see also open scholarship and copyright, Kenya
Kenya Copyright Board (KECOBO) 136, 143–144, 145, 146, 210, 213, 225
National Competent Authority for traditional knowledge (TK) 142
Kenya Historical Association (KHA) 210
Kenya Industrial Property Institute (KIPI) 136, 142, 143–144, 145, 239
Kenya Institute for Public Policy Research and Analysis (KIPPRA) 209
Kenya Institute of Curriculum Development (KICD) broadcasts 216
Kenya National Academy of Sciences (KNAS) 210
Kenya National Library Service Board Act 209
Kenya Nonfiction and Academic Authors' Association (KENFAA) 210
Kenya Oral Literature Association (KOLA) 210
Keynesian economics and growth theory 33, 34–35
knowledge
African 5
capital 43
commercial application 337
commons 7, 388
dissemination 320, 348
economy 78–79
hoarding 285–186
informal management of 16
“know how” 43
poor people’s 3
pre-existing (“prior art”) 235
socialisation 21, 310–311, 338
technological 242
utilisation 348
knowledge-based economic development and change 322–323
knowledge–development nexus 38
knowledge economy (KE) 203
knowledge-governance frameworks 7
knowledge-sharing 178
knowledge transfer 375–376
knowledge transfer offices (KTOs), Botswana 349, 353
Kruger to Canyons (K2C) Biosphere Region, South Africa 151
ethnic groupings 151–152
K2C Management Committee 151, 153, 154, 165, 166
Kukula Healers 151–154, 373, 380, 388
Association 156–157, 167
bio-cultural protocol (BCP) 153–154, 160, 161
Code of Ethics 157
collective 380
commons 155–156
cosmetics 164
evolution of TK commons 156–161
Goddin and Godding laboratories 164
holistic approach to knowledge-sharing 158
IP-based property rights 156
Nagoya Protocol 161–162
non-disclosure agreement with Godding and Godding 161–162
Traditional Health Practitioners’ Association 151
trust as legal model 161–163, 166
Kyoto Protocol 252, 267
labelling 93
labour, flow of 48
Latin America 61
Law Society of Kenya (LSK) 210
least developed countries (LDCs) 319
legal profession and universities 304
legal trust components 163–164
licensing alternative, in Egypt 175
and assignments of scholarly works 217
compulsory 216
learning materials 378
of rights, voluntary 255
and registration of businesses 50
Lipset, Seymour Martin 35–36
Luanda, Angola study 46
Lusaka Agreement on the Creation of ARIPo 340
Maasai, Kenya 142
community 135–136, 143, 144
knowledge 18, 132, 133
project on digitisation of culture 145
Maasai Cultural Heritage (MCH) Organisation, Kenya 136
Madrid Agreement Concerning the International Registration of Marks 117, 255, 340
Index

Protocol 117, 118, 255, 341
Treaty 124–125
Malindi District Cultural Association (MDCA), Kenya 136, 144
Manufacturers Association of Nigeria (MAN) 116
manufacturing 35, 38
Margaret Ogola & 3 Others v David Aduda and Another, Kenya 215
marginalisation of African youth 45
marketed services, innovation in 38
Marshall, Alfred 34
mass consumption, age of high 36
Mauritius 306
McClelland, David 36
media coverage 6
medicinal knowledge 378
medicinal plants 152, 157
and animals 158
Mekelle University, Ethiopia 323
memoranda of understanding (MoUs) 72
microelectronics 203
micro-entrepreneurs 50
micro or cottage enterprises 113
Miji Kenda community, Kenya 135–136, 142, 143
Millennium Development Goals (MDGs) 51
Ministry of Agriculture (MOA), Ethiopia 83, 88, 91, 94
Agricultural Extension Directorate 91
Coffee Quality and Marketing Implementation Manual 92
Ministry of Infrastructure, Science and Technology (MIST), Botswana 343, 344, 345
modernisation theory 33, 35–37
Mozambique 379, 382, 385
applications to the Industrial Property Institute (IPI), Maputo 262
biofuels agreement with EU and Brazil 253
biofuel production 248–250
biofuel technology patenting 250, 256
Constitution 254
Inter-Ministerial Committee on Biofuels 259–260, 385–386
IP Code 255
IP Strategy 254–255
national biofuel policy-making and patenting 20
oil-from-jatropha initiative 388
patents granted 261
policy and legal framework 253–255
studies of biofuel sector 251–253
Multilateral Environmental Agreements (MEAs) 110
musicians
anti-commercialisation 187–188
business model 188
ethical consumption 189
non-monetary inclinations 188
remuneration model 188–189
sharing-based public licence 189
copyright and sharing 177–178
physical versus virtual 189–190
piracy in Egypt 176
as quasi-public good 172–174
remuneration, incentives, business models 184–189
websites for illegal music downloads, Egypt 176
muli (traditional medicine) hunters, South Africa 152

N
National Agenda for Research and Innovation in Biofuels, Mozambique 254, 260
National Enquiry Point (NEP), Botswana 343
National Experts on Science and Technology Indicators (NESTI), OECD 37
national innovation system (NIS) approach 317
National Museums and Heritage Act, Kenya 140, 141
National Museums of Kenya 142, 143
National Policy and Strategy on Biofuels Development, Mozambique 248, 249, 250, 253, 258, 259, 382, 385–386
National Policy on Traditional Knowledge, Genetic Resources and Traditional Cultural Expressions (National TK Policy), Kenya 141
National Programme for the Promotion of Mozambican Innovators 258
National Programme on Biofuels Development, Mozambique 254, 260
National Research and Development (R&D) Strategy, South Africa 288
National Research Centre (NRC), Egypt 273
National Scholarly Editors’ Forum, South Africa 289
Natural Justice non-governmental organisation (NGO) 153

403
neoclassical school 34
market equilibrium 34
orderly economic change 34
Natural Oil Company (Natoil), Egypt 274–275
New and Renewable Energy Authority (NREA), Egypt 274
New Nile Company, Egypt 274
Nigeria 379
Aba leather shoemakers 115, 115–116, 120, 121–123
Central Bank 125
economy 109–111
existing cluster dynamics 119–120
existing knowledge of IP 121
export of leather 110
Itoku-Abeokuta textile producers 115, 120, 121–124
Kano leather tanneries 114, 115, 120, 121–122
leather and textile products 17, 78, 109–111, 113–114, 388
legal and regulatory framework 116–119
market challenges 121–123
oil sector 109–110
Patent Office, Abuja 236–237
revenue generation 110
small-scale operators 123
textile makers 376
Trade Marks Act 112, 116–117, 121, 124–125
Yoruba people 113
Nigerian Customs Service 125
Nigerian Export Promotion Council 116, 125
Nokia 276–277
non-disclosure agreements (NDAs) 299–300
non-GI certification marks 124
non-trademarked certification schemes 78
North Africa 3
North–South protectionist dynamics 18

O
online Creative Commons-based "digital commons” 19
open, distance and electronic learning (ODEL) 216
open access (OA) 204, 211–212
to knowledge and culture 81
online publishing approach 19
publishing 289, 303, 383, 388
scholarly publishing 282, 287, 306
Open African Innovation Research and Training Project (Open A.I.R.) 12–15, 388
network's interdisciplinary framework 13
research programme 14
open development 8–9, 80, 134, 191, 204, 211, 386
open educational resources (OERs) 289
open innovation 135
open knowledge 288
openness 22, 388–389
open research 288
open scholarship 222–223, 381
challenges to accessing scholarly information 217–218
and alternative publishing, Kenya 225–226
and copyright, Kenya 19, 203–205, 211–212
open science approach 21, 288, 320, 335, 337
open source approach 276
Oromia Coffee Farmers Cooperative Union (OCFCU), Ethiopia 93
organic certification 84, 88, 90
schemes 90
through foreign-based certifiers 89
organic labelling 78
Organisation africaine de la propriété intellectuelle (OAPI) 237, 238, 239, 381
Organisation for Economic Co-operation and Development (OECD) 6, 9, 32, 38, 51, 335, 366
Working Party of NESTI 37–38
work on innovation 47
ownership and control systems 7
of IP rights 327
of outputs from publicly funded research 20–22, 378
Oxfam 86
P
Paris Convention for the Protection of Industrial Property 117–118, 139, 255, 340
Parsons, Talcott 36
patentability 234
patent commons 276–277
International Bureau, Geneva 256, 261
Office, Geneva 238
patent data 276
patenting and commercialisation 383
dynamics 20
university 320
patent offices in Africa 234
roles of 235–236
survey data 243–244
patents 1, 10, 132, 138, 234, 248, 249, 346, 378
access to information 259
applications 236, 238
business method 210
database 276
design 379
"dumping grounds” 381
exclusive rights 270
incentivised payment for examiners 241
regimes in Africa 236–238
Index

protection 381, 389
and renewable energy 15
in research 14
software 210
statistics 11
systems in African states 240–241
performance industry 133
Perroux, François 35
Petrobras, Brazil 386
Petromoc, Mozambique 251, 253, 257
'petty patent' utility models (UMs) 248
pharmaceutical industries 133, 134, 306
pharmaceutical research 306
Pitney Bowes 276–277
place-based intellectual property (PBIP) 17, 378
strategies 77, 78
plagiarism 221
Plant and Health Inspectorate, Kenya 143–144
plants 273
African palm 249
breeder exemption 270, 383
breeders' rights 138
castor seed 249
coconut 248, 249
genetic resources 376
jatropha 248, 249, 250, 251, 252, 256, 272,
274, 376, 386
sugar cane 248, 249
sui generis protection for varieties, Egypt 383
sunflower 249
variety rights systems 270

see also jojoba
Population Action International 45–46
preconditions for take-off 36
Pred, Allan 35
principles of inclusion and collaboration 378
prior informed consent 151
private-sector investment 319–320
probability proportional to size (PPS) measures 339
Proclamation for the Registration and Protection of Designation of Origin, Ethiopia 91
product innovation 38
quality improvement 96
production cost 125
professionalism in patent offices 239
property ownership, attributes of 90
proprietary value 101
protection of IP 285–286
public good 172, 204
publicly funded research 14, 318, 320, 338, 351, 359, 375, 376, 384, 385
ownership of outputs 383
public–private partnerships 14–15
public research organisations (PROs), Botswana 335, 336–337, 339, 353, 363
publishers’ copyright policies 221–222
publishing
digital 204
offline print 204
scholarly 204
Q
qualitative data 13, 373
quantitative data 13, 373
quasi-public good 173
R
reading or recitation of an extract 216
remuneration, direct financial 204
Renewable Energy Strategy, Egypt 268
research
analytical framework 12
applied 353
development-focused 287
emphasis on institutions 357
epidemiological 353
evaluation 353
investment of public funds 306
literature/desk review 353
methods 12–13
multi-disciplinary network of researchers 12
perception of institution's involvement 357
publicly funded entities 309
publishing 285
respondents’ average yearly output, Botswana 358
thematic areas 13–16
types 356
under-utilisation of findings 286
research and development (R&D) 15, 20, 43, 45, 209, 242, 253, 254, 283, 305, 322, 375, 382
university-based 308
Revised National Policy on Research, Science, Technology and Innovation, Botswana 344
rights-holders 100
rights management information (RMI) 219
Rogers, Everett 36
Rostow, Walt Whitman 36
royalties 204
Rural Industrial Promotion Company (Botswana) (RIPCO (B)) 344
rural poverty 152
S
scholarly communication 208
scholarly publishing 203, 205, 287
literary works 207
scholarly works, use of 221
scholarship 208
see also architecture for Kenyan scholarship
school use and copyright 215–216
Scielo OA publishing platform, Brazil 289
Scielo South Africa 289
science and engineering publications 376
Science and Technology Capacity Index (STCI) 344
Innovation & Intellectual Property

Science and Technology Policy, Ethiopia 322
"science first" position 337
science, technology and innovation (STI)
African Science, Technology and Innovation Indicators (ASTII) 39
Botswana 335, 344
national goals 22
Policy, Ethiopia 316–318, 322, 328, 338, 375
at Uganda National Council for Science and Technology (UNCST) 65
scientific information in African patent applications 242
scientific research, new economics of 337
scientists and academics 272–274
Schumpeter, Joseph 34, 41
Seeds and Plant Varieties Act, Kenya 140
sharing or non-disclosure agreements 379
Sierra Leone, study 48
small, micro- and medium enterprises (SMMEs) 341
small and medium enterprises (SMEs) 253, 255, 324, 327, 391
access to technology 258
utilisation and adaptation 256
small-scale enterprises 109
small-scale entrepreneurs 111
Smith, Adam 34
social and cultural value of textiles 110
social (de facto) commons 171–174
socialisation of knowledge 286–287, 299
socially conscious consumers 86
social network analysis (SNA) 63, 64
social networks 11
Society for International Development (SID), Kenya 210
socio-economic development 32, 134, 204, 283, 373, 382, 384–385, 387
grassroots, ad hoc visions 387
high-level, state visions 385–386
mid-level, associational visions 386
sociological approach to development 36
solar and wind energy 272
Solow, Robert 35
growth model 35
Sony 276–277
sorghum 249
South Africa 118, 385
traditional healers 376
traditional medical practitioners 386
South African Revenue Service 307
Southern African Development Community (SADC) 344
South Korean patent office (Korean Intellectual Property Office) 275–276
standardisation 109
Director of International Standards and SMEs 110
Duty Drawback Schemes 125
respondent adherence to standards 119
Statistical Office of the European Communities, see Eurostat
sub-Saharan Africa
informal employment 47
perspectives 3
"youth bulge" 45
youth-to-adult ratio 45
sui generis
ex parte form of GI protection 94
ex officio form of GI protection 94
geographical indications (GIs) 77–78, 80
protection of GIs, TK, plant varieties 389–390
regimes 80
systems 18
Sumitomo Chemical Company 256
Sun Biofuels Mozambique 256–257
Quinvita 257
Lufthansa 257
supply-side factors 47
Sussex Manifesto: Science and Technology for Developing Countries during the Second Development Decade 38
Swakopmund Protocol on the Protection of Traditional Knowledge and Expressions of Folklore within the Framework of ARIPO 139–140, 340
T
take-off preconditions 36
Tanzanian small-scale farmers 382
Tea Board of India 97
Technical and Vocational Education and Training (TVET), Ethiopia 323–324
technological development 35, 36
technological innovation 33
technological knowledge 242
technological protection measures (TPMs) 14, 173, 219
Technology and Human Resources Programme (THRIP), South Africa 303
Technology and Innovation Support Centres (TISCs), WIPO 259
Technology Innovation Agency (TIA), South Africa, 288, 304, 308, 309
technology research outputs 328
technology transfer offices (TTOs) 292, 296, 302, 307, 366
funding functions at Wits Enterprise 305
informal mode 382
and legal offices 309
telecommunications 203
Ten-Year Innovation Plan, South Africa 288
Thomson Reuters Web of Science 289
trade
global 79
Index

liberalisation 109, 111
secrets 1, 10, 138, 346, 379, 389
trademark-based GI protection 101
trademark GIs versus *sui generis* GIs 100–102
ecological, cultural, biodiversity goals 100
trademarks 1, 10, 80, 132, 138, 346, 378
 collective 78
 conventional 78
 ordinary 78
 protection 389
 registration and licensing 98
 in research 13
 speciality 78
 see also communal trademarks
Trade Marks Act, Kenya 140, 141
Trademarks Registry, Nigeria 116
traditional cultural expressions (TCEs) 133, 136, 145
traditional ecological knowledge 133
traditional healers, Bushbuckridge, South Africa 151–152
Traditional Health Practitioners Act, South Africa 159
traditional knowledge (TK) 80, 123, 136, 138, 214, 341, 376, 378
 and biodiversity 155
 biological resources and cultural goods 133
 commercialisation 133
 commons 16, 18, 134, 151
 commons-based approach 380
 commons pool 160
digital library initiative as defensive protection 145
exploitation of 18
legal trust mechanism 18
multi-generational 159, 380
patent applications 271
potential of commons arrangements 18–19
in production processes 114
in research 15
 sui generis protection 145
TK-based agricultural products 80
TK-related IP challenges 16
trans-generational territorial 81
Traditional Knowledge Digital Library (TKDL), India 134, 144
traditional medicinal knowledge 133, 375
ancestors Nkomo le Lwandle and Dlamini 157
from healer (*sangoma*) to apprentice (*thwasa*) 157
transfer and collection systems 158
traditional society 36
trust
 administration rules 166
 beneficiary 166–167
 property 164–165
settlor 165
terms 165–166
trustee 166
Trust Property Control Act, South Africa 162–164, 166
U
Uganda 59, 375
 auto mechanics 387
 Central Engineering Workshop, Kampala 70
 Kampala 59
 policy-making 72–73
 see also Gatsby Garage automotive workshop
Uganda Gatsby Trust (UGT) 64
Uganda National Council for Science and Technology (UNCST) 65, 72–73
UK 78, 94, 118, 319–320
 Copyright Acts, colonial era 213–214
 Intellectual Property Office 275
 IP framework 285
UN
 Commission on Trade and Development (UNCTAD) 94, 343
 Declaration of the Rights of Indigenous Peoples 139
 Department of Economic and Social Affairs (UNDESA) 251–252, 256
 Educational, Scientific and Cultural Organisation (UNESCO) 6, 47, 151
 Framework Convention on Climate Change (UNFCCC) 252, 267, 276, 382–383
 Industrial Development Organisation (UNIDO) 116
 Office for West Africa 46
unemployment 152
unfair competition 101
Universal Copyright Convention (UCC) 214
universities 338
university-generated knowledge 317
university–industry knowledge transfer, Ethiopia 316, 329, 376, 383
university–industry linkages 385
University of Botswana (UB) 339, 342, 345
Institutional Review Board (IRB) 339
Office of Research and Development (ORD) 342
research community 342–343
University of Cape Town (UCT) 21, 282–285, 383
 commercialisation and dispute resolution 295
 Creative Commons (CC)-licensed learning materials 298
 Intellectual Property Advisory Committee 295
 ownership of IP 295
 research and innovation indicators 295–296, 296
 Research Contracts and IP Services office (RCIPS) 285, 296–297, 298, 299
 researcher–inventor perspectives 299–300
UCT OpenContent website 298
Innovation & Intellectual Property

University of Nairobi Institute of Development Studies (IDS) 210
University of the Witwatersrand (Wits University), South Africa 21, 282–285, 383
funding 302
IP protection strategy 304
patent filing 301–302
pharmaceutical research team 305
research and innovation indicators 300–301
research-inventor perspective 305–307
research-IP manager perspective 302–305
Technology Transfer Unit 302
Wits Enterprise (Wits Commercial Enterprise (Pty) Ltd) 285, 302–304, 305, 307
US
Agency for International Development (USAID) 116
Digital Millennium Copyright Act 217–218
Patent and Trademark Office (USPTO) 275–276, 336
Sonny Bono Copyright Term Extension Act (CTEA) 218
Uniform Computer Information Transactions Act (UCITA) 218
utilities, innovation in 38
utility models (UMs) 138, 248, 379
V
value chains 82
differentiation strategies 85–88
Ethiopian coffee 83–85
Ghanaian cocoa 85
intermediaries in products 95–96
visual art and design 133
W
Web of Science journal index 289
Wennekers and Thurik Model 42–43, 44
West African countries 110
White Paper on Science and Technology, South Africa 288
witchcraft 159
Witchcraft Suppression Act, South Africa 159
work policy, externally funded 309
World Bank 79, 252
World Business Council for Sustainable Development (WBCSD) 276–277
World Economic Forum (WEF) 344
Global Competitiveness Report 344
World Employment Programme (WEP), ILO 48–49
mission to Kenya 48–49
World Intellectual Property Organisation (WIPO) 3, 14, 18, 112, 143, 239, 255, 259
development agenda 3, 14, 259
Convention Establishing WIPO 340
Creative Heritage Project 145
digitisation of culture 145
digitisation of Maasai culture 135–136, 145
Diplomatic Conference, Marrakesh 3
Internet Treaties 211
Marrakesh Treaty to Facilitate Access to Published Works for Persons Who Are Blind, Visually Impaired, or Otherwise Print Disabled 3
patent databases 276
PATENTSCOPE database 276
Technology and Innovation Support Centres (TISCs) 259
WIPO Copyright Treaty (WCT) 211, 340
WIPO Patent Information Service (WPIS) 276
WIPO Performances and Phonograms Treaty (WPPT) 211, 340
World Trade Organisation (WTO) 2–3, 97, 110, 239, 269, 343
Trade-Related Aspects of Intellectual Property Rights (TRIPS) Agreement 2, 97, 117, 132–133, 211
Y
youth unemployment in Africa 46–47
deficiency in skills 46
Z
Zwolle principles, on scholarship and copyright management 218